Bor Nanoparçacıklarının Doğal Taşınımla Isı Transferinde Nanoakışkan Olarak Kullanımının İncelenmesi ve Karşılaştırılması

Gelişen teknolojiyle birlikte kendine daha fazla uygulama alanı bulan ve dünya üzerindeki rezervlerin büyük bir çoğunluğu ülkemizde bulunan bor elementi aynı zamanda stratejik bir öneme de sahiptir. Bu nedenle bor elementinin ısı transferi açısından etkinliğini belirlemek amacıyla çoğu ısı transferi uygulamasında akışkan olarak kullanılan su yerine, içerisine belirli hacimsel oranlarda bor nanoparçacıkları katılan nanoakışkan kullanılmıştır. Ele alınan problem geometrisi kare kesitli olup tamamen nanoakışkan ile doludur. Bir düşey duvarından ısıtılan, diğer düşey duvarından soğutulan kapalı ortamda doğal taşınım ile gerçekleşen ısı transferi analiz edilmiştir. Bu amaçla geliştirilen ve içerisinde kaldırma kuvveti etkilerini de barındıran Boussinesq yaklaşımına göre elde edilen eşitlikler SIMPLE algoritmasına göre iteratif olarak çözülmüştür. Rayleigh sayısının 104-106 aralığında yapılan çalışmada nanoparçacık hacimsel karışım oranı ise % 0, 2 ve 4 şeklinde değişmektedir. Ana akışkan olarak kullanılan su için Prandtl sayısı 6.2 değerini almıştır. Rayleigh sayısı ve hacimsel karışım oranına bağlı olarak bor nanoparçacık için elde edilen sonuçlar, nanoparçacık olarak bakır veya alüminyum oksit kullanılması durumundakilerle karşılaştırılmıştır. Bor nanoparçacık kullanımında hacimsel karışım oranının artmasıyla ısı transferinin % 14 oranında arttığı ve ısı aktarımının diğer nanoparçacıkların kullanıldığı durumlardakinden daha yüksek olduğu gözlenmiştir.

Investigation and Comparison of Usage of Boron Nanoparticles as Nanofluid in Natural Convection Heat Transfer

The boron element, which finds itself in more application areas with developing technology and whose most of the world's reserves are located in our country, also has a strategic importance. For this reason, in order to determine the efficiency of boron element in terms of heat transfer, in most of the heat transfer applications nanofluid which has boron nanoparticles in certain volumetric fractions are used to replace the water used as fluid. The geometry of the problem is square and completely filled with nanofluid. Heat transfer values were determined by natural convection in the enclosure which was heated by a vertical wall and cooled from the other vertical wall. For this purpose, the equations obtained according to the Boussinesq approach, which contains the effects of buoyancy, were solved iteratively according to the SIMPLE algorithm. In the study of Rayleigh number between 104-106, nanoparticle volumetric fraction varies between 0, 2 and 4%. The Prandtl number for water used as base fluid is 6.2. The obtained results are presented for boron nanoparticle based on Rayleigh number and volumetric fraction and compared with those in which copper or aluminium oxide is used as the nanoparticle. In the use of boron nanoparticles, it was found that the heat transfer increased by 14% with increasing volumetric fractions and higher heat transfer occurs than other nanoparticles.

___

  • [1] Choi Stephen US., ve Jeffrey A. Eastman. 1995. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab., IL (United States), 1-8.
  • [2] Tombal T.D., Özkan, Ş.G., Ünver K.İ., Osmanlıoğlu A.E. 2016. Bor bileşiklerinin özellikleri üretimi kullanımı ve nükleer reaktör teknolojisinde önemi, Bor Dergisi (2), 86-95.
  • [3] Żyła, G., Fal, J., Traciak, J., Gizowska, M., Perkowski, K. 2016. Huge thermal conductivity enhancement in boron nitride–ethylene glycol nanofluids, Materials Chemistry and Physics, 180, 250-255.
  • [4] Wan, Q., Jin, Y., Sun, P., Ding, Y. 2015. Tribological behaviour of a lubricant oil containing boron nitride nanoparticles, Procedia Engineering, 102, 1038-1045.
  • [5] Han, W., Wang, L., Zhang, R., Ge, C., Ma, Z., Yang, Y., Zhang, X. 2017. Water‐dispersible boron nitride nanospheres with high thermal conductivity for heat‐transfer nanofluids, European Journal of Inorganic Chemistry, (46), 5466-5474.
  • [6] Salles, V., Bernard, S., Chiriac, R., Miele, P. 2012. Structural and thermal properties of boron nitride nanoparticles, Journal of the European Ceramic Society, 32(9), 1867-1871.
  • [7] Zhi, C., Xu, Y., Bando, Y., Golberg, D. 2011. Highly thermo-conductive fluid with boron nitride nanofillers, ACS nano, 5(8), 6571-6577.
  • [8] Albanese, A., Tang, P. S., Chan, W. C. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annual Review of Biomedical Engineering, 14, 1-16.
  • [9] Kong, L., Sun, J., Bao, Y. 2017. Preparation, characterization and tribological mechanism of nanofluids, Rsc Advances, 7(21), 12599-12609.
  • [10] Asadi, A., Aberoumand, S., Moradikazerouni, A., Pourfattah, F., Żyła, G., Estellé, P.,Mahian O., Wongwises S., Nguyen H.M., Arabkoohsar, A. 2019. Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state-of-the-art review, Powder Technology., Volume 352, 15, 209-226.
  • [11] Buongiorno, J. 2006. Convective transport in nanofluids, Journal of Heat Transfer, 128(3), 240-250.
  • [12] Khanafer, K., Vafai, K., Lightstone, M. 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International Journal of Heat and Mass Transfer, 46(19), 3639-3653.
  • [13] Öğüt, E.B. 2009. Natural convection of water-based nanofluids in an inclined enclosure with a heat source, International Journal of Thermal Sciences, 48(11), 2063-2073.
  • [14] Öğüt, E.B. 2010. Eğik Kare Kapalı Bir Bölge İçindeki Su Bazlı Nanoakışkanların Doğal Taşınımla Isı Transferi, Isı Bilimi ve Tekniği Dergisi, 30(1), 23-33.
  • [15] Ben-Cheikh, N., Chamkha, A.J., Ben-Beya, B., Lili, T. 2013. Natural convection of water-based nanofluids in a square enclosure with non-uniform heating of the bottom Wall, Journal of Modern Physics, 4(02), 147.
  • [16] Ho, C.J., Chen, M.W., Li, Z.W. 2008. Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, International Journal of Heat and Mass Transfer, 51(17-18), 4506-4516.
  • [17] Ghasemi, B., Aminossadati, S. M., Raisi, A. 2011. Magnetic field effect on natural convection in a nanofluid-filled square enclosure, International Journal of Thermal Sciences, 50(9), 1748-1756.
  • [18] Ho, C.J., Liu, W.K., Chang, Y.S., Lin, C.C. 2010. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, International Journal of Thermal Sciences, 49(8), 1345-1353.
  • [19] Abu-Nada, E., Oztop, H.F. 2009. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid, International Journal of Heat and Fluid Flow, 30(4), 669-678.
  • [20] Aminossadati, S.M., Ghasemi, B. 2009. Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics-B/Fluids, 28(5), 630-640,
  • [21] Oztop, H.F., Abu-Nada, E. 2008. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International journal of heat and fluid flow, 29(5), 1326-1336.
  • [22] Jou, R.Y., Tzeng, S.C. 2006. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, International Communications in Heat and Mass Transfer, 33(6), 727-736.
  • [23] Alloui, Z., Vasseur, P., Reggio, M. 2011. Natural convection of nanofluids in a shallow cavity heated from below, International journal of Thermal sciences, 50(3), 385-393.
  • [24] Abu-Nada, E., Masoud, Z., Oztop, H.F., Campo, A. 2010. Effect of nanofluid variable properties on natural convection in enclosures, International Journal of Thermal Sciences, 49(3), 479-491.
  • [25] Bouhalleb, M., Abbassi, H. 2015. Natural convection in an inclined rectangular enclosure filled by CuO–H2O nanofluid, with sinusoidal temperature distribution, International Journal of Hydrogen Energy, 40(39), 13676-13684.
  • [26] Alloui, Z., Guiet, J., Vasseur, P., Reggio, M. 2012. Natural convection of nanofluids in a shallow rectangular enclosure heated from the side, The Canadian Journal of Chemical Engineering, 90(1), 69-78,
  • [27] Mahmoudi, A.H., Pop, I., Shahi, M. 2012. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid, International Journal of Thermal Sciences, 59, 126-140.
  • [28] Ghasemi, B., Aminossadati, S.M. 2010. Brownian motion of nanoparticles in a triangular enclosure with natural convection, International Journal of Thermal Sciences, 49(6), 931-940.
  • [29] Aminossadati, S.M., Ghasemi, B. 2011. Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid, Computers & Mathematics with Applications, 61(7), 1739-1753.
  • [30] Selimefendigil, F., Öztop, H.F. 2014. MHD mixed convection of nanofluid filled partially heated triangular enclosure with a rotating adiabatic cylinder, Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2150-2162.
  • [31] Sun, Q., Pop, I. 2011.Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the Wall, International Journal of Thermal Sciences, 50(11), 2141-2153.
  • [32] Saleh, H., Roslan, R., Hashim, I. 2011. Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure, International Journal of Heat and Mass Transfer, 54(1-3), 194-201.
  • [33] Mahmoudi, A.H., Pop, I., Shahi, M., Talebi, F. 2013. MHD natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid, Computers & Fluids, 72, 46-62.
  • [34] Esfe, M.H., Arani, A.A.A., Yan, W.M., Ehteram, H., Aghaie, A., Afrand, M. 2016. Natural convection in a trapezoidal enclosure filled with carbon nanotube–EG–water nanofluid, International Journal of Heat and Mass Transfer, 92, 76-82.
  • [35] Bondareva, N.S., Sheremet, M.A., Pop, I. 2015. Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid: Buongiorno’s mathematical model, International Journal of Numerical Methods for Heat & Fluid Flow, 25(8), 1924-1946.
  • [36] Nasrin, R., Parvin, S. 2012. Investigation of buoyancy-driven flow and heat transfer in a trapezoidal cavity filled with water–Cu nanofluid, International Communications in Heat and Mass Transfer, 39(2), 270-274.
  • [37] Miroshnichenko, I.V., Sheremet, M.A., Oztop, H.F., Al-Salem, K. 2016. MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid, International Journal of Mechanical Sciences, 119, 294-302.
  • [38] Soleimani, S., Sheikholeslami, M., Ganji, D.D., Gorji-Bandpay, M. 2012. Natural convection heat transfer in a nanofluid filled semi-annulus enclosure, International Communications in Heat and Mass Transfer, 39(4), 565-574.
  • [39] Sheikholeslami, M., Ellahi, R., Hassan, M., Soleimani, S. 2014. A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder, International Journal of Numerical Methods for Heat & Fluid Flow, 24(8), 1906-1927.
  • [40] Al-Zamily, A.M.J. 2014. Effect of magnetic field on natural convection in a nanofluid-filled semi-circular enclosure with heat flux source, Computers & Fluids, 103, 71-85.
  • [41] Ali, M., Zeitoun, O., Almotairi, S. 2013. Natural convection heat transfer inside vertical circular enclosure filled with water-based Al2O3 nanofluids, International Journal of Thermal Sciences, 63, 115-124.
  • [42] Maxwell, J.C. 1873. A treatise on electricity and magnetism(Vol. 1), Oxford: Clarendon Press,
  • [43] Brinkman, H.C. 1952. The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20(4), 571-571.
  • [44] Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow, McGraw Hill, New York.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi