Bartın Nehri’nin Fizikokimyasal Özelliklerinin Yağışlı ve Kurak Dönemlerdeki Değişimi

Bu çalışmada, yağışlı ve kurak dönemin Bartın Nehri su kalitesi üzerindeki etkisinin belirlenmesi amaçlanmıştır. Bu sebeple temmuz, ağustos ayları kurak dönemi; kasım, aralık, şubat ayları ise yağışlı dönemi temsilen örnekleme zamanları olarak seçilmiştir. Özellikle yaz aylarında hissedilen rahatsız edici koku problemi ve gözlenen balık ölümleri ile yaz ve kış aylarında nehir suyu renk değişimi çalışmanın başlangıç noktasını oluşturmaktadır. Sıcaklık, renk, bulanıklık, askıda katı madde (AKM), toplam çözünmüş katılar (TÇK) ve elektriksel iletkenlik (Eİ) fiziksel parametreler; çözünmüş oksijen (ÇO), pH, NO3̄, SO4-2, PO4-3, kimyasal oksijen ihtiyacı (KOİ), kimyasal parametreler olarak analiz edilmiştir. Ortalama KOİ konsantrasyonu 116 mg/L olarak belirlenmiş olup, IV. sınıf yüzeysel sular için belirlenmiş limit değerin 1.66 katıdır. Ayrıca Dünya Sağlık Örgütü (DSÖ) tarafından içme suları için bildirilmiş limit değerden (10 mg/L) yüksektir. PO4-P ortalama 0.17 mg/L olup yüzeysel sularda ötrofikasyon için belirlenmiş sınır değerden (0.1 mg/L) yüksektir. Nitrat, sülfat, fosfat , Eİ , TÇK ve sıcaklık yağışlı dönemde azalırken; renk, pH, ÇO artmıştır. Şiddetli yağmur yağışı nehirde akıda katı madde AKM ve bulanıklığı arttırmıştır. Çalışmada ayrıca Horton Metoduna göre pH, NO3-, SO4-2, KOİ ve TÇK’ için su kalite indeksi hesaplanmıştır. Su kalite indeksi 394.47-795.83 aralığında değişmiş olup nehir suyunun içme suyu, sulama suyu ve endüstriyel kullanım için uygun olmadığı, ancak uygun su arıtma teknolojileri ile arıtıldıktan sonra kullanılabileceği belirlenmiştir.

The Change of Physicochemical Properties of Bartın River in Rainy and Dry Periods

In this study, it is aimed to determine the effect of rainy and dry periods on the water quality of Bartin River by physicochemical parameters. For this reason, July, August were selected for the dry period, while November, December and February were selected for the rainy period. pH, electrical conductivity, total dissolved solids were measured with Hanna (HI9812-5) multi parameter probe. The dissolved oxygen was determined by the dissolved oxygen meter (Jenway 970). The suspended solids were determined by the gravimetric method using the filter set. Nitrate, sulfate phosphate, COD was determined by spectrophotometric method (Hach Lange DR 6000). The samples were taken in accordance with the ISO 5667-3: 2018. The analyzes were performed in accordance with ASTM (1995) and APHA (1998). The mean COD concentration was determined as 116 mg/L. This value is 1.66 times the specified limit value for 4th class surface waters. It is also higher than the limit value (5 mg/L) reported by the World Health Organization (WHO) for drinking waters. PO4-P was determined as 0.17 mg/L. This value is higher than the limit value specified for eutrophication in surface waters (0.1 mg/L). In addition, the water quality index for pH, NO3̄, SO4-2, COD and TDS was calculated according to the Horton Method. The mean WQI values were determined as 1939, 1916 and 956 according to TS 266 (2013), EPA (2018) and WHO (2018) drinking water standard values, respectively. Water quality index (WQI) was determined as 1719 and 1430 for rainy period and dry period, respectively. Heavy rainfall increased the suspended solids (AKM) and turbidity in the river. It is thought that the particles (silt, clay, etc.) carried with the precipitation water cause a decrease in the water quality in the rainy period. As a result, it is not possible to use river water for drinking, irrigation or industrial purposes. However, it can be used after purification with appropriate water treatment technologies.

___

  • [1] Arain, M.B., Kazi, T.G., Jamali, M.K., Jalbani, N., Afridi, H.I., Shah, A., 2008. Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromismossambicus of polluted Manchar Lake. Chemosphere 70, s. 1845-1856.
  • [2] Qadir, A., Malik, R.N., Husain, S.Z., 2008. Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring Assessment, Cilt 140, s. 43-59.
  • [3] Şener, Ş., Şener, E., Davraz, A. 2017. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, Cilt 584-585, s.131-144.
  • [4] Anteneh, Y., Zeleke, G., Gebremariam, E. 2018. Assessment of surface water quality in Legedadie and Dire catchments. Acta Ecologica Sinica, Cilt 38, s. 81-95.
  • [5] Singh, K.P., Malik, A., Mohan, D., Sinha, S. 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Research, Cilt 38, s. 3980-3992.
  • [6] Shivayogimath, C.B., Kalburgi, P.B., Deshannavar, U.B., Virupakshaiah, D.B.M., 2012. Water quality evaluation of river Ghataprabha. India I Res. J. Environ. Sci. Cilt 1, 12-18.
  • [7] Soulsby,C., Langan, S.J., Neal, C. 2001. Environmental change, land use and water quality in Scotland: current issues and future prospects. Science Of The Total Environment, Cilt 265, s. 387–394.
  • [8] Fakayode, S.O., 2005. Impact assessment of industrial effluent on water quality of the receiving Alaro River in Ibadan, Nigeria. Afr. J. Environ. Assess. Manag. 10, 1–13.
  • [9] Minareci, O., Ozturk, M., Egemen, O., Minareci, E., 2009. Detergent and phosphate pollution in Gediz River, Turkey. Afr. J. Biotechnol. 8 (15), 3568–3575.
  • [10] Shrimali, M., and Singh, K.P. 2001. New methods of nitrate removal from water. Environmental Pollution, Cilt 112, s. 351-359.
  • [11] Ucun Özel, H., Gemici, B., 2016. Bartın Irmağı Kirlilik Profilinin Fiziksel Parametrelerle Belirlenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7(1): 52-58.
  • [12] Taş, M., Kırgız, T., Arslan, N., Çamur-Elipek,B., Güher, H. 2008. Çorlu Deresi’nin (Tekirdağ) Oligochaeta Faunası ve Bazı Fizikokimyasal Özelliklerinin Zamana Bağlı Değişimi. E.U. Journal of Fisheries & Aquatic Sciences 25, 4: 253–257
  • [13] Kara, C., Çömlekçioğlu, U., 2004. Karaçay (Kahramanmaraş)’ın Kirliliğinin Biyolojik ve Fiziko-Kimyasal Parametrelerle İncelenmesi. KSÜ Fen ve Mühendislik Dergisi 7(1).
  • [14] Toroğlu, E., Toroğlu, S., Alaeddinoğlu, F., 2006. Aksu Çayı’nda (kahraman maraş) Akarsu Kirliliği. Coğrafi Bilimler Dergisi,4 (1), 93-103.
  • [15] ISO 5667-3:2018 (en) Water quality — Sampling — Part 3: Preservation and handling of water samples.
  • [16] Larsen, D., Swihart, G.H., Xiao, Y., 2001. Hydrochemistry and isotope composition of springs in the Tecopa basin, southeastern California, USA. Chem. Geol. 179, 17–35.
  • [17] APHA, 1998. Standard methods for the examination of water and, waste water. In: Clesceri, L.S., Greenberg, A.E., Eaton, A.D. (Eds.). America Public Health Association, Washington, DC.
  • [18] American Society for Testing and Materials (ASTM)1995. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water. D1252-95, ASTM Annual Book of Standards. American Soc. Testing & Materials, Philadelphia, Pa.
  • [19] Yerüstü Su Kalitesi Yönetmeliği (YSKY). Resmi Gazete Tarihi/Sayı:10.08.2016/29797.
  • [20] World Health Organization (WHO) 2018. A global overview of national regulations and standards for drinking-water quality.
  • [21] TS 266, 2013. İnsani Tüketim amaçlı Sular Hakkında Yönetmelik. Resmi Gazete Tarihi/Sayı: 07.03.2013/28580.
  • [22] EPA, 2018a. 2018 Edition of the Drinking Water Standards and Health Advisories Tables.
  • [23] Horton, R. K. 1965. An index number system for rating water quality. Journal Water Pollution Control Federation, Cilt 37, s. 300-305.
  • [24] Sahu, P., Sikdar, P.K., 2008. Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal, India. Environ. Geol. Cilt 55, s. 823–835.
  • [25] EPA, 2018b. Chapter 62-302 Surface Water QualityStandards. https://www.epa.gov/sites/production/files/2014-12/documents/fl_section62-302.pdf
  • [26] Oinam, J.D., Ramanathan, A.L., Linda, A., Singh, G. 2011. A study of arsenic, ironand other dissolved ion variations in the groundwater of Bishnupur District. Manipur India Environ. Earth Sci. Cilt 62, s.1183–1195.
  • [27] Avvannavar, M.S., Shrihar, S., 2008. Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environ Monit Assess. 143:279
  • [28] Sharpley, A.N., McDowell, R.W., Kleinman, P.J., 2001. Phosphorus loss from land to water:integrating agricultural and environmental management. Plant Soil, Cilt 237, s. 287–307.
  • [29] Handa, B.K. 1990. Contamination of Groundwaters by phosphate. Bhu-jal News. 5:24-36.
  • [30] Anonymous, 1998. Water pollution and control regulations in Turkey. Formal Gazette 199 (19), 13–74.
  • [31] Wayland, K., Long, D., Hyndman, D., Pijanowski, B., Woodhams, S., Haack, K., 2003. Identifying relationships between Baseflow geochemistry and land use with synoptic sampling and R-mode factor analysis. J. Environ. Qual. 32, 180–190.
  • [32] Sidle, W.C., Roose, D.L., Shanklin, D.R., 2000. Isotopic evidence for naturally occurring sulfate pollution of ponds in the Kankakee River Basin, Illinois-Indiana. J. Environ. Qual. 29 (5), 1594–1603.
  • [33]Bahar, M.M., Yamamuro,M., 2008. Assessing the influence ofwatershed land use patterns on major ion chemistry of river waters in the Shimousa Upland Japan. Chem. Ecol. 24 (5), 341–355.
  • [34] Varol, S., Davraz, A., 2015. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/ Turkey). Environ. Earth Sci. 73, 1725–1744.
  • [35 ] Amneera, W.A., Najıb, W.A.Z., Yusof, S.R.M., Ragunathan, S., 2013. “Water quality index of Perlis River, Malaysia”. Int. J. Civ. Environ. Eng. 13 (2), 1–6.
  • [36] Gülle, İ., Turna, İ.İ., Güçlü, S.S., Küçük, F., Gülle, P., Güçlü, Z. 2008. Burdur Gölü'ndeki Sıcaklık, Çözünmüş Oksijen, pH ve Elektriksel İletkenlik Değerlerinin Dikey Yönde Değişimi. E.U. Journal of Fisheries & Aquatic Sciences, 25, 4: 283–287
  • [37] Blume, K.K., Macedo, J.C., Meneguzzi, A., Silva, L.B., Quevedo, D.M., Rodrigues, M.A.S., 2010. Water quality assessment of the Sinos River, Southern Brazil. Braz. J. Biol. Cilt 70, s.1185-1193.
  • [38] Ejaz, N., Hashmi, H.N., Ghumman, A.R., 2011. Water quality assessment of effluent receiving streams in Pakistan: a case study of Ravi river. Mehran Univ. Res. J. Of Eng. Technol. 30, s. 383-396.
  • [39] Öner, Ö., Çelik, A., 2011. Gediz Nehri Aşağı Gediz Havzasından Alınan Su ve Sediment Örneklerinde Bazı Kirlilik Parametrelerinin İncelenmesi. Ekoloji 20, 78, 48-52.