Bal peteği ve Beton Çekirdek Malzemesine Sahip Cam/Epoksi ve Karbon/Epoksi Kompozit Tüplerinin Bası Davranışı

Bu deneysel çalışmada, [-45°/+45°]4 ve [0°/90°]4 gibi iki farklı dizilim açısına sahip cam/epoksi ve karbon/epoksi kompozit kare tüplerin K25Y30, K50Y60 ve K100Y120 olarak üç farklı boyutta elle yatırma yöntemi kullanılarak üretimi gerçekleştirilmiştir. Üretilen kompozit tüpler için dolgu (çekirdek) malzemeleri olarak alüminyum bal peteği (honeycomb) ve C25 sınıflı hazır beton kullanılmıştır. Deneysel çalışmanın amacı, kompozit kare tüplerin eksenel bası davranışı üzerine numune boyutu, elyaf malzemesi tipi, dizilim açısı, dolgu malzemesi gibi parametre etkilerinin belirlenmesidir. Deney sonrası kompozit kare tüplerde oluşan deformasyon şekilleri yorumlandı. Dolgu malzemelerin yapısal ve dayanım özelliklerinin kompozit tüplerin bası davranışı üzerindeki etkileri araştırıldı. Tüm parametreler için elde edilen sonuçlar, kendi içinde ve birbirleriyle karşılaştırıldı. Dolgu malzemesi, her üç numune boyutunun bası davranışını iyileştirdiği görülmüştür. Numune boyutu büyüdükçe basma kuvveti değeri de artmıştır. En yüksek basma kuvveti beton dolgulu karbon/epoksi esaslı kompozit tüp numunelerde, en düşük değer ise içi boş cam/epoksi numunelerde meydana gelmiştir. Basma sonrası numune hasarları dizilim açısı yönünde oluşmuştur.

Compressive Behavior of Glass/Epoxy and Carbon/Epoxy Tubes Having Core Material with Concrete and Honeycomb

In this experimental study, the production of glass/epoxy and carbon/epoxy composite square tubes with two different orientation angles such as [-45°/+45°]4 and [0°/90°]4 in three different sizes as K25Y30, K50Y60 and K100Y120 was carried out by hand lay-up method. For produced the composite tubes, aluminum honeycomb and C25 class ready mixed concrete are used as filling materials. The purpose of the experimental study is to determine the parameter effects such as specimen size, fiber material type, orientation angle, filling material on the axial compression behavior of composite square tubes. After the experiment, deformation shapes in composite square tubes were interpreted. The effects of structural and strength properties of filler materials on compressive behavior of composite tubes were investigated. The results obtained for all parameters were compared within themselves and with each other. The filling material was seen to improve the compressive behavior of all three specimen sizes. As the specimen size increased, the compression force value also increased. The highest compression force occurred in the composite tube specimens based on carbon/epoxy filled with concrete, and the lowest value was in hollow glass/epoxy specimens. Specimen damages after compression occurred in the direction of the orientation angle.

___

  • Pariti, V.N.P.M. 2017. Mechanical Behavior of Carbon and Glass Fiber Reinforced Composite Materials under Varying Loading Rates. University of Michigan, Master of Science Thesis, 131s, Dearborn.
  • Shukla, S.P. 2011. Investigation into Tribo Potential of Rice Husk (RH) Char Reinforced Epoxy Composite. National Institute of Technology, Deemed University, Master of Science Thesis, 103s, Rourkela.
  • Abdul-Salam A., Farghaly, A.S., Benmokrane, B. 2016. Mechanisms of Shear Resistance of One-way Concrete Slabs Reinforced with FRP Bars, Construction and Building Materials, Cilt. 127, s. 959-970. DOI: 10.1016/j.conbuildmat.2016.10.015
  • Ashour, A.F. 2006. Flexural and shear capacities of concrete beams reinforced with GFRP bars, Construction and Building Materials, Cilt. 20(10), s. 1005-1015. DOI: 10.1016/j.conbuildmat.2005.06.023
  • Manalo, A., Benmokrane B., Park, K.P., Lutze, D. 2014. Recent Developments on FRP Bars as Internal Reinforcement in Concrete Structures, Concrete in Australia, Cilt. 40(2), s. 46-56. http://eprints.usq.edu.au/id/eprint/26783
  • Alajarmeh, O.S., Manalo, A.C., Benmokrane, B., Karunasena, W., Mendis, P., Nguyen, K.T.Q. 2019. Compressive Behavior of Axially Loaded Circular Hollow Concrete Columns Reinforced with GFRP Bars and Spirals, Construction and Building Materials, Cilt. 194, s. 12-23. DOI: 10.1016/j.conbuildmat.2018.11.016
  • Al Antali, A., Umer, R., Zhou, J., Cantwell, W.J. 2017. The Energy-Absorbing Properties of Composite Tube-Reinforced Aluminum Honeycomb, Composite Structures, Cilt. 176, s. 630-639. DOI: 10.1016/j.compstruct.2017.05.063
  • Aziz, A.R, Kumar, S., George, P., Cantwell, W.J., Keller T., Yanes Armas, S., Carlsson, L.A., Frostig, Y. 2018. Energy-Absorbing Honeycomb Structures Based on Carbon Fiber Reinforced Plastics. 12th International Conference on Sandwich Structures ICSS-12, 19-22 August 2018, Lausanne, 178-180.
  • Bigdeli, A., and Nouri, M.D. 2019. A Crushing Analysis and Multi-objective Optimization of Thin-Walled Five-cell Structures, Thin-Walled Structures, Cilt. 137, s. 1–18. DOI: 10.1016/j.tws.2018.12.033
  • Fang, J., Sun, G., Qiu, N., Pang, T., Li, S., Li, Q. 2018. On Hierarchical Honeycombs Under Out-of-Plane Crushing, International Journal of Solids and Structures, Cilt. 135, s. 1-13. DOI: 10.1016/j.ijsolstr.2017.08.013
  • Siromani, D., Awerbuch, J., Tan, T.M. 2014. Finite Element Modeling of The Crushing Behavior of Thin-Walled CFRP Tubes Under Axial Compression, Composite Part-B: Engineering, Cilt. 8, s. 50-64. DOI: 10.1016/j.compositesb.2014.04.008
  • Han, X., Hou, S., Ying, L., Hou, W., Aliyev, H. 2019. “On The Fracture Behaviour of Adhesively Bonded CFRP Hat-Shaped Thin- Walled Beam Under Axial Crushing Load: An Experimental and Modelling Study, Composite Structures, Cilt. 215, s. 258-265. DOI: 10.1016/j.compstruct.2019.01.075
  • Hussein, R.D., Ruan, D., Lu, G., Sbarski, I. 2016. Axial Crushing Behaviour of Honeycomb-Filled Square Carbon Fibre Reinforced Plastic (CFRP) Tubes, Composite Structures, Cilt. 140, s. 166–179. DOI: 10.1016/j.compstruct.2015.12.064
  • Hussein, R.D., Ruan, D. and Lu, G. 2018. An Analytical Model of Square CFRP Tubes Subjected to Axial Compression, Composites Science and Technology, Cilt. 168, s. 170-178. DOI: 10.1016/j.compscitech.2018.09.019
  • Ivanez, I., Canadas, L.F., Saez, S.S. 2017. Compressive Deformation and Energy-absorption Capability of Aluminum Honeycomb Core, Composite Structures, Cilt. 174, s. 123–133. DOI: 10.1016/j.compstruct.2017.04.056
  • Ilangovan, S., Kumaran, S.S., Vasudevan, A. Surana, M. 2018. Investigation of The Transverse Compressive and Buckling Strength of Aluminum Grid Reinforced Hybrid GFRP Composite, Materials Today: Proceedings, Cilt. 5(11), s. 25625-25631. DOI: 10.1016/j.matpr.2018.11.002
  • Liu, Q., Xing H., Ju Y., Ou, Z., Li Q. 2014. Quasi-static Axial Crushing and Transverse Bending of Double Hat Shaped CFRP Tubes, Composite Structures, Cilt. 117, s. 1-11. DOI: 10.1016/j.compstruct.2014.06.024
  • Liu, Q., Ou, Z., Mo, Z.., Li, Q., Qu, D. 2015. Experimental Investigation into Dynamic Axial Impact Responses of Double Hat Shaped CFRP Tubes, Composites Part B: Engineering, Cilt. 79, s. 494-504. DOI: 10.1016/j.compositesb.2015.05.016
  • Liu, Q., Xu, X., Ma, J., Wang, J., Shi, Y., Hui, D. 2017. Lateral Crushing and Bending Responses Of CFRP Square Tube Filled with Aluminum Honeycomb, Composites Part B: Engineering, Cilt. 118, s. 104-115. DOI: 10.1016/j.compositesb.2017.03.021
  • Liu, Q., Ma, J., He, Z., Hu, Z., Hui, D. 2017. Energy Absorption of Bio-Inspired Multi-cell CFRP and Aluminum Square Tubes, Composites Part B: Engineering, Cilt. 121, s. 134-144. DOI: 10.1016/j.compositesb.2017.03.034
  • Yu, H., Shi, H., Chen, S. 2019. A Novel Multi-cell CFRP/AA6061 Hybrid Tube and Its Structural Multi Objective Optimization, Composite Structures, Cilt. 209, s. 579-589. DOI: 10.1016/j.compstruct.2018.10.112
  • Zhang, X., Cheng, G., Zhang, H. 2006. Theoretical Prediction and Numerical Simulation of Multi-cell Square Thin-walled Structures, Thin-Walled Structures, Cilt. 44(11), s. 1185-1191. DOI: 10.1016/j.tws.2006.09.002
  • Zhang, X., Leng, K., Zhang, H. 2017. Axial Crushing of Embedded Multi-cell Tubes, International Journal of Mechanical Sciences, Cilt. 131-132, s. 459-470. DOI: 10.1016/j.ijmecsci.2017.07.019 Wang, Z. and Liu J. 2018. Mechanical Performance of Honeycomb Filled with Circular CFRP Tubes, Composites Part B: Engineering, Cilt. 135, s. 232-241. DOI: 10.1016/j.compositesb.2017.09.048
  • Gibson L.J. and Ashby M.F. 1997. Cellular Solids: Structure and Properties. Cambridge University Press, 510s. DOI: 10.1017/CBO9781139878326
  • Lu, G. and Yu, T. 2003. Energy Absorption of Structures and Materials. Woodhead Publishing, 424s.
  • Deniz, M.E., Karakuzu, R., Sari, M., Icten, B.M. 2011. “On The Residual Compressive Strength of The Glass-Epoxy Tubes Subjected to Transverse Impact Loading, Journal of Composite Materials, Cilt. 46(6), s. 737–745. DOI: 10.1177/0021998311410483
  • Deniz, M.E. (2011) “Seawater Effect on Behaviors of Impact and Axial Compression-After Impact of Composite Pipes. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 91s, İzmir.
  • Deniz, M.E., Karakuzu, R., Icten B.M. 2013. Transverse Impact and Axial Compression Behaviors of Glass/Epoxy Pipes Subjected to Seawater and Impact Loading, International Journal of Damage Mechanics, Cilt. 22(7), s. 1071–1085. DOI: 10.1177/1056789513475687
  • Deniz, M.E. 2017. Buckling Behavior of Curved Composite Plates with a Central Circular Hole, Dicle University Journal of Engineering, Cilt. 8(1), s. 203–212. https://dergipark.org.tr/tr/pub/dumf/issue/33627/398702
  • Alajarmeh, O.S., Manalo, A.C., Benmokrane, B., Karunasena, W., Mendis, P. 2019. Axial Performance of Hollow Concrete Columns Reinforced with GFRP Composite Bars with Different Reinforcement Ratios, Composite Structures, Cilt. 213(1), s. 153-164. DOI: 10.1016/j.compstruct.2019.01.096
  • Sun, H., Jia, M., Zhang, S., Wang, Y. 2019. ‘Study of Buckling-Restrained Braces with Concrete Infilled GFRP Tubes’, Thin-Walled Structures, Cilt. 136, s. 16-33. DOI:10.1016/j.tws.2018.10.040
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi