Adsorpsiyon Kolon Sisteminde Pirina Kullanılarak Ağır Metal Giderimi

Zeytinyağı üretiminden atık olarak ortaya çıkan pirina ile akü geri dönüşüm tesisi atıksuyundaki ağır metallerin giderimi sabit yataklı adsorpsiyon kolonunda incelenmiştir. Çalışmada, Aksaray Organize Sanayi bölgesinde yer alan akü geri dönüşüm tesisi atıksuyu kullanılmıştır. Ağır metal giderim çalışmasında adsorpsiyona etki eden akış hızı ve kolon yatak yüksekliği incelenmiştir. Akü geri dönüşüm atıksuyunun ham pH ve ağır metal konsantrasyonunda; maksimum giderim verimine 30 mL/dk'lık bir akış hızı ve 25 cm'lik bir kolon yüksekliğinde ulaşılmıştır. Akü geri dönüşüm atıksuyundaki Pb(II), Zn(II), Ni(II) ve Cu(II) için ortalama %98’lik giderim verimi sağlanmış olup, ağır metal adsorplanma kapasitesi 2.64 mg/g olarak hesaplanmıştır. Elde edilen sonuçlar doğrultusunda, aktifleştirilmiş pirinanın kullanımıyla akü geri dönüşüm atıksuyundaki ağır metallerin uzaklaştırılması ekonomik bir çözüm yolu sunmaktadır.

Heavy Metal Removal by using Olive Pomace in Adsorption Column System

The removal of heavy metals from wastewater in the battery recycling plant, which is a waste from olive oil production, was investigated in a fixed bed adsorption column. In the study, the wastewater from the battery recycling facility located in Aksaray Organized Industrial Zone was used. The effective parameters to adsorption in the study using real wastewater were examined and optimum values were determined. At studies of original pH and wastewater metal concentration; it has been determined that the maximum removal efficiency is achieved at a flow rate of 30 mL/min and height of 25 cm. The battery recycling wastewater has been treated with an average removal efficiency of 98% and a metal adsorption capacity of 2.64 mg/g for Pb (II), Zn (II), Ni (II) and Cu (II). In the direction of the results obtained, heavy metal removal using activated olive pomace offers an effective method for the economic treatment of battery recycling wastewater. 

___

  • [1] Gök, O., Çimen Mesutoğlu, Ö. 2017. Ağır Metallerin Giderimi için Düşük Maliyetli Adsorban Olarak Pirina Kullanımı, Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt. 32:2, s. 507-516. DOI: 10.17341/gazimmfd.322176.
  • [2] Xu, J., Coa, Z., Zhang, Y., Yuan, Z., Lou, Z., Xu, X., Wang, X. 2018. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism, Chemosphere, Cilt, 195, s. 351-364.
  • [3] Hernández-Hernández, L.E., Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Ávila, H.E. 2017. Antagonistic binary adsorption of heavy metals using stratified bone char columns, Journal of Molecular Liquids, Cilt, 241, s. 334-346.
  • [4] Dissanayake, D.M.R.E.A., Wijesinghe, W.M.K.E.H., Iqbal, S.S., Priyantha, N., Iqbal, M.C.M. 2016. Isotherm and kinetic study on Ni(II) and Pb(II) biosorption by the fern Asplenium nidus L., Ecological Engineering, Cilt. 88, s. 237–241. DOI: 10.1016/j.ecoleng.2015.12.028.
  • [5] Sherlala, A.I.A., Raman, A.A.A., Bello, M.M., Asghar, A. 2018. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption, Chemosphere, Cilt, 193, s. 1004-1007.
  • [6] Oancea, P., Meltzer, V. 2013. Photo–Fenton process for the degradation of tartrazine (E102) in aqueous medium, Journal of the Taiwan Institute of Chemical Engineers, Cilt, 44, s. 990–994.
  • [7] Brion-Robya, R., Gagnona, J., Deschênes, J.S., Chabot, B. 2018. Investigation of fixed bed adsorption column operation parameters using a chitosan material for treatment of arsenate contaminated water, Journal of Environmental Chemical Engineering, Cilt, 6, s. 505–511.
  • [8] Ali, R.M., Hamad, H.A., Hussein, M.M., Malash, G.F. 2016. Potential of using green adsorbent of heavy metal removal from aqueous solu- tions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecological Engineering, Cilt, 91, s. 317–332.
  • [9] İrdemez, Ş., Ekmekyapar Torun, F., Durmuş, G. 2017. Montmorillonit Mineral Kayacı Kullanılarak Atıksulardan Krom (III) İyonlarının Giderimi ve Etki Eden Parametrelerin İncelenmesi, Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt. 19:57, s. 701-711.
  • [10] Callery, O., Healy, M.G., Rognard, F., Barthelemy, L., Brennan, R.B. 2016. Evaluating the long-term performance of low-cost adsorbents using small-scale adsorption column experiments, Water Research, Cilt, 101, s. 429-440.
  • [11] Özdemir, Ö., Turan, M. 2013. Sabit yataklı modifiye zeolit kolon reaktörde tekstil atıksuyundan renk giderimi ve zeolit yatağının rejenerasyonu, İTÜ Dergisi/e : Su Kirlenmesi ve Kontrolü, Cilt, 17:3, s. 35-44.
  • [12] Vukelic, D., Boskovic, N., Aparski, B., Radonic, J., Budak, I., Pap, S., Sekulic, M.T. 2018. Eco-design of a low-cost adsorbent produced from waste cherry kernels, Journal of Cleaner Production, Cilt, 174, 1620-1628.
  • [13] Saini, S., Arora, S., Kirandeep, Singh, B.P., Katnoria, J.K., Kaur, I. 2018. Nitrilotriacetic acid modified bamboo charcoal (NTA-MBC): An effective adsorbent for the removal of Cr (III) and Cr (VI) from aqueous solution, Journal of Environmental Chemical Engineering, Cilt, 6, s. 2965-2974.
  • [14] Çelebi, H., Gök, O. 2017. Evaluation of Lead Adsorption Kinetics and Isotherms from Aqueous Solution Using Natural Walnut Shell, International Journal of Environmental Research, Cilt, 11:1, s. 83-90.
  • [15] Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., Fang, F. 2016. Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems, Biochemical Engineering Journal, Cilt, 105, s. 27-35.
  • [16] Shahmohammadi-Kalalagh, S., Babazadeh, H., Nazemi, A.H., Manshouri, M. 2011. Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite, Caspian Journal of Environmental Science, Cilt, 9, s. 243–255.
  • [17] Vieira, M.G.A., Almeida, N.A.F., de-Gimenes, M.L., Silva, M.G.C. 2010. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, Journal of Hazardous Materials, Cilt, 177, s. 362–371.
  • [18] Abbasi Z., Alikarami M., Nezhad E.R., Moradi F., Moradi V. 2013. Adsorptive Removal of Co2+ and Ni2+ by Peels of Banana from Aqueous Solution. Universal Journal of Chemistry, Cilt, 1, s. 90-95.
  • [19] Cataldo, S., Gianguzza, A., Milea, D., Muratore, N., Pettignano, A., Sammartano, S. 2018. A critical approach to the toxic metal ion removal by hazelnut and almond shells, Environmental Science and Pollution Research, Cilt, 25, s. 4238–4253.
  • [20] Banerjee, M., Basu, R.K., Das, K.S. 2018. Cu(II) removal using green adsorbents: kinetic modeling and plant scale-up design, Environmental Science and Pollution Research,
  • [21] Doymaz, I., Gorel, O., Akgün, N.A. 2004. Drying characteristics of the solid by product of olive oil extraction, Biosystem Engineering, Cilt. 88, s. 213-219.
  • [22] Çimen, Ö. 2014. Pirina kullanılarak sulu çözeltilerden adsorpsiyon yöntemiyle ağır metallerin giderimi, Aksaray Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 104s, Aksaray.
  • [23] Arshadi, M., Amiri, M.J., Mousavi, S. 2014. Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, Water Resources and Industry, Cilt, 6, s. 1–17.
  • [24] Koçer, O. 2013. Zeytin posası (pirina) üzerine malaşit yeşili’nin sulu çözeltiden adsorpsiyonu, Kilis 7 Aralık Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 53s, Kilis.
  • [25] Kumar, U., Bandyopadhyay, M. 2006. Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresource Technology, Cilt, 97:1, s. 104-109.
  • [26] Orhan, R., Erdem, M. 2017. Üzüm sapından hazırlanan aktif karbon ile sulu çözeltilerden Ni(II)’nin giderimi, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, Cilt, 29:1, s. 319-324.
  • [27] Cutillas-Barreiro, L., Paradelo, R., Igrexas-Soto, A., Núñez-Delgado, A., Fernández-Sanjurjo, M.J., Álvarez-Rodriguez, E., Garrote, G., Nóvoa-Muñoz,J.C., Arias-Estévez, M. 2016. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn, Ecotoxicology and Environmental Safety, Cilt, 131, s. 118-126.
  • [28] Smaranda, C., Popescu, M.C., Bulgariu, D., Malut, T., Gavrilescu, M. 2017. Adsorption of organic pollutants onto a Romanian soil: Column dynamics and transport, Process Safety and Environmental Protection, Cilt, 108, s. 108–120.
  • [29] Hodaifa, G., Alami, S.B.D., Ochando-Pulido, J.M., Víctor-Ortega, M.D. 2014. Iron removal from liquid effluents by olive stones on adsorption column: breakthrough curves, Ecological Engineering, Cilt, 73, s. 270–275.
  • [30] Nguyen, T.C., Loganathan, P., Nguyen, T.V., Vigneswaran, S., Kandasamy, J., Naidu, R. 2015. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies, Chemical Engineering Journal, Cilt, 270, s. 393-404.
  • [31] Johari, K., Saman, N., Song, S.T., Chin, C.S., Kong, H., Mat, H. 2016. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents, International Biodeterioration & Biodegradation, Cilt, 109, s. 45-52.
  • [32] Martín-Lara, M.A., Blazquez, G., Trujillo, M.C., Perez, A., Calero, M. 2014. New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone, Journal of Cleaner Production, Cilt, 81, S. 120-129.
  • [33] SKKY, 2004. Su Kirliliği Kontrolü Yönetmeliği Tabloları. http://www.resmigazete.gov.tr/eskiler/2004/12/Su%20Kirliliği%20ekleri.htm (Erişim Tarihi: 19.07.2017)