Açık Deniz Rüzgar Türbinleri için Uygun Yer Seçim Kriterlerinin İrdelenmesi ve Kuzey Ege Kıyılarına Uygulanması

Rüzgar enerjisi insanoğlu tarafından, yaklaşık 2000 yıldır çeşitli amaçlarda kullanılmıştır. Rüzgar enerjisini mekanik enerjiye çeviren yel değirmenleriyle başlayan gelişim süreci, 21. yüzyılda açık deniz rüzgar türbinleriyle devam etmektedir. Bu çalışmada, açık deniz rüzgar türbinlerinin tasarım sürecinin en önemli basamağını oluşturan uygun yer seçim kriterleri detaylı şekilde incelenmiştir. Uygun yer seçiminde kullanılan yöntemler ve mühendislik çözümleri değerlendirilmiştir. Kuzey Ege kıyılarında bulunan Gökçeada, Bozcaada, Çanakkale ve Ayvacık bölgeleri için WAsP paket programı kullanılarak uygulama yapılmıştır. Rüzgar hızı ve potansiyeli, derinlik koşulları, yasak sahalar, deniz ulaşım ve kablo hatları türbin yerleşiminde belirleyici kriterler olarak kabul edilmiştir. Sonuç olarak Bozcaada ve Gökçeada kıyıları açık deniz rüzgar türbinleri için uygun alanlar olarak tespit edilmiştir.

Investigation of Suitable Site Selection Criteria for Offshore Wind Turbines and Application to North Aegean Shores

Wind energy has been used by humanity for various purposes for nearly 2000 years. The development process has started with windmills that convert wind energy into mechanical energy and then continues with offshore wind turbines in the 21st century. In this study, suitable site selection criteria, which are the most important step in the design process of offshore wind turbines, have been examined in details. The methods and engineering solutions used in the suitable site selection were evaluated. Application was made using the WAsP package program for Gökçeada, Bozcaada, Çanakkale and Ayvacık regions on the North Aegean coasts. Wind speed and potential, depth conditions, restricted areas, marine transportation and cable lines have been recognized as determining criteria in turbine placement. As a result, Bozcaada and Gökçeada coasts have been identified as suitable areas for offshore wind turbines.

___

  • Penna, A. N. 2019. A History of Energy Flows: From Human Labor to Renewable Power. Routledge, 264s
  • Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi, https://iklim.csb.gov.tr/kyoto-protokolu-i-4363 (Erişim Tarihi; 01.06.2020).
  • Council-GWEC, GLOBAL WIND REPORT 2019, Global Wind Energy Council, Brussels.
  • Stehly, T. J., Beiter, P. C. 2020. 2018 Cost of Wind Energy Review (No. NREL/TP-5000-74598). National Renewable Energy Lab.(NREL), Golden, CO United States.
  • Manwell, J. F., Rogers, A. L., McGowan, J. G., Bailey, B. H. 2002. An offshore wind resource assessment study for New England. Renewable Energy, Cilt. 27(2), s.175-187. DOI:10.1016/S0960-1481(01)00183-5
  • Manwell, J. F., Elkinton, C. N., Rogers, A. L., McGowan, J. G. 2007. Review of design conditions applicable to offshore wind energy systems in the United States. Renewable and Sustainable Energy Reviews, Cilt. 11(2), s. 210-234. DOI: 10.1016/j.rser.2005.01.002
  • Breton, S. P., Moe, G. 2009. Status, plans and technologies for offshore wind turbines in Europe and North America. Renewable Energy, Cilt. 34(3), s.646-654. DOI:10.1016/j.renene.2008.05.040
  • Manwell, J. F., McGowan, J. G., Rogers, A. L. 2010. Wind energy explained: theory, design and application, 2nd, John Wiley & Sons, 675s.
  • Akdağ, S. A., Güler, Ö. 2010. Wind characteristics analyses and determination of appropriate wind turbine for Amasra—Black Sea region, Turkey. International Journal of Green Energy, Cilt. 7(4), s.422-433. DOI: 10.1080/15435075.2010.493819
  • Malhotra, S. 2011. Selection, design and construction of offshore wind turbine foundations. In Wind turbines. IntechOpen. DOI: 10.5772/15461
  • Güzel, B. 2012. Açık Deniz Rüzgar Enerjisi, Fizibilite Adımları ile Bozcaada ve Gökçeada Örnek Çalışması. İstanbul Teknik Üniversitesi, Enerji Enstitüsü, Yüksek Lisans Tezi, 111s, İstanbul.
  • Akpınar, A. 2013. Evaluation of wind energy potentiality at coastal locations along the north eastern coasts of Turkey. Energy, Cilt. 50, s. 395-405. DOI: 10.1016/j.energy.2012.11.019
  • Argın, M., Yerci, V. 2015, November. The assessment of offshore wind power potential of Turkey. In 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 966-970. IEEE.
  • Argin, M., Yerci, V., Erdogan, N., Kucuksari, S., Cali, U. 2019. Exploring the offshore wind energy potential of Turkey based on multi-criteria site selection. Energy Strategy Reviews, Cilt. 23, s.33-46. DOI: 10.1016/j.esr.2018.12.005
  • Huvaj, N., Caceoğlu, E., Baidol, Y., 2019 «Deniz Üstü Rüzgar Türbinleri Temel Seçimi ve Deniz Tabanı Zemin Araştırmaları, 5. İzmir Rüzgâr Sempozyumu, izmir, 197-210
  • Wu, X., Hu, Y., Li, Y., Yang, J., Duan, L., Wang, T., Borthwick, A. 2019. Foundations of offshore wind turbines: A review. Renewable and Sustainable Energy Reviews, Cilt. 104, s. 379-393. DOI: 10.1016/j.rser.2019.01.012
  • Ucar, A., Balo, F., 2020. Assessment of wind power potential for turbine installation in coastal areas of Turkey, Renewable and Sustainable Energy Reviews, Cilt. 14 (7), s. 1901-1912. DOI: 10.1016/j.rser.2010.03.021
  • Shepherd, D. G. 1990. Historical development of the windmill, NASA.
  • Hau, E., 2013. Wind turbines: fundamentals, technologies, application, economics, 3rd, Springer Science & Business Media, 879s.
  • Ostachowicz, W., McGugan, M., Schröder-Hinrichs, J. U., Luczak, M. 2016. MARE-WINT: new materials and reliability in offshore wind turbine technology. Springer Nature, 432s.
  • WindEurope, 2020. Wind energy in Europe in 2019 Trends and statistics,WindEurope, Brussels.
  • TÜREB, 2019. Türkiye Rüzgar Enerjisi İstatistik Raporu, Türkiye Rüzgar Enerjisi Birliği, Ankara.
  • Van Bussel, G. J. W., Zaaijer, M. B. 2001. Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study. MAREC 2001 Marine Renewable Energies Conference, Newcastle, 119-126.
  • Van Der Tempel, J. 2006. Design of support structures for offshore wind turbines. Delft University of Technology, Doktora Tezi, 209s, Delft.
  • Vasileiou, M., Loukogeorgaki, E., Vagiona, D. G. 2017. GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and sustainable energy reviews, Cilt. 73, s.745-757. DOI: 10.1016/j.rser.2017.01.161
  • Wu, Y., Zhang, J., Yuan, J., Geng, S., Zhang, H. 2016. Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China. Energy Conversion and Management, Cilt. 113, s.66-81. DOI: 10.1016/j.enconman.2016.01.020
  • Cradden, L., Kalogeri, C., Barrios, I. M., Galanis, G., Ingram, D., Kallos, G. 2016. Multi-criteria site selection for offshore renewable energy platforms. Renewable energy, Cilt. 87, s.791-806. DOI: 10.1016/j.renene.2015.10.035
  • Wątróbski, J., Ziemba, P., Wolski, W. 2015, September. Methodological aspects of decision support system for the location of renewable energy sources. In 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), s. 1451-1459). IEEE.
  • Bagočius, V., Zavadskas, E. K., Turskis, Z. 2014. Multi-person selection of the best wind turbine based on the multi-criteria integrated additive-multiplicative utility function. Journal of civil engineering and management, Cilt. 20(4), s.590-599. DOI: 10.3846/13923730.2014.932836
  • Fetanat, A., Khorasaninejad, E. 2015. A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean & Coastal Management, Cilt.109, s.17-28. DOI: 10.1016/j.ocecoaman.2015.02.005
  • Mekonnen, A. D., Gorsevski, P. V. 2015. A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renewable and Sustainable Energy Reviews, Cilt. 41, s. 162-177. DOI: 10.1016/j.rser.2014.08.030
  • Sałabun, W., Wątróbski, J., & Piegat, A. 2016, Identification of a multi-criteria model of location assessment for renewable energy sources. In International Conference on Artificial Intelligence and Soft Computing, s. 321-332. Springer, Cham.
  • Yenilenebilir Enerji Genel Müdürlüğü, Türkiye Rüzgar Enerjisi Potansiyel Atlası, http://www.yegm.gov.tr/YEKrepa/REPA-duyuru_01.html (Erişim tarihi: 23.05. 2020).
  • Global Wind Atlas, Global Wind Atlas 2020. https://globalwindatlas.info/ (Erişim tarihi: 10.06.2020).
  • Loukogeorgaki, E., Vagiona, D. G., Vasileiou, M. 2018. Site selection of hybrid offshore wind and wave energy systems in Greece incorporating environmental impact assessment. Energies, Cilt. 11(8), 2095. DOI: 10.3390/en11082095
  • Bianchi, F. D., De Battista, H., & Mantz, R. J. 2006. Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media. 218s.
  • Taşan, E., Akdağ, C. T., Savidis, S. 2010.Offshore Rüzgar Enerjisi Temel Sistemleri Tekil Kazık Temel Sisteminin Tekrarlı Yatay Yükler Altında Davranışı, Zemin Mekaniği ve Temel Mühendisliği Onüçüncü Ulusal Kongresi, İstanbul, 175-195.
  • European Wind Energy Association (EWEA), Wind Energy,The Facts 2009. https://www.wind-energy-the-facts.org/development-and-investment-costs-of-offshore-wind-power.html (Erişim Tarihi: 15.06.2020).
  • Kaya, B. Oğuz, E. 2019. Tekil Kazık Temelli Açık Deniz Rüzgar Türbinlerinin Avrupa'daki Gelişmi, 5. İzmir Rüzgâr Sempozyumu, İzmir, 175-195
  • EMODnet, EMODnet Bathymetry, https://portal.emodnet-bathymetry.eu/ (Erişim Tarihi: 15.06.2020).
  • U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, 2018. Offshore Wind Technologies Market Report, Washington.
  • Langhamer, O., Holand, H., Rosenqvist, G. 2016. Effects of an offshore wind farm (OWF) on the common shore crab Carcinus maenas: Tagging pilot experiments in the Lillgrund offshore wind farm (Sweden). PloS one, Cilt.11(10), s.1-17. e0165096.
  • Oekler, J. 2008. German Offshore Wind Energy Foundation, Artist, TRANSPORT OF A TRIPOD. Foundation Offshore Wind Energy, https://www.offshore-stiftung.de/en/media-library?filtercat=3&page=2 (Erişim Tarihi: 19.06.2020).
  • Serrano, J. M., Domínguez-Navarro, J. A., Sevil, J. A., & López, R. D. 2018. A case study of floating offshore wind park in the Mediterranean, International Conference on Renewable Energies and Power Quality (ICREPQ’18), Salamanca (Spain).
  • Birleşmiş Milletler, BİRLEŞMİŞ MİLLETLER DENİZ HUKUKU SÖZLEŞMESİ, 1982. https://denizmevzuat.uab.gov.tr/uploads/pages/uluslararasi-sozlesmeler/denizhukuku.pdf (Erişim Tarihi 19.06.2020).
  • Snyder, B., Kaiser, M. J. 2009. Ecological and economic cost-benefit analysis of offshore wind energy. Renewable Energy, Cilt. 34(6), s.1567-1578.
  • Ziemba, P., Wątróbski, J., Zioło, M., Karczmarczyk, A. 2017. Using the PROSA method in offshore wind farm location problems. Energies, Cilt. 10(11), 1755. DOI: 10.3390/en10111755
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi