ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNİ KULLANAN MAKİNE-EKİPMAN SEÇİM ÇALIŞMALARINDA BULANIKLIĞIN SONUÇLARA ETKİSİNİN İNCELENMESİ

Bulanıklığın ve belirsizliğin bulunduğu seçim problemlerinde Çok Kriterli Karar Verme (ÇKKV) modellerinde tamsayıların yerine bulanık sayıların kullanılması tavsiye edilmektedir. Literatürde pek çok farklı ÇKKV modeli geliştirilmiş olmasına rağmen, şimdiye kadar tamsayıların yerine bulanıklığın kullanılmasının sağladığı faydayı analiz eden bir yaklaşım geliştirilmemiştir. Bu çalışmada bulanık sayıların kullanılmasının getireceği faydalar literatürde makine-ekipman seçimi çalışmalarında en sık rastlanan Bulanık ÇKKV yöntemleri olan Bulanık Analitik Hiyerarşi Süreci (BAHS) ve Bulanık TOPSIS (BTOPSIS) yöntemleri kullanılarak incelenmiştir. Çalışmada, onaltı adet işleme merkezi ve yedi adet seçim kriteri içeren bir seçim problemi oluşturulmuştur. Bulanık sayılar için tamsayı, üçgen bulanık sayı ve trapez bulanık sayı tipleri kullanılarak seçim probleminde farklı işleme merkezi sıralamaları elde edilmiştir. Sıralamalar arasındaki farklılıklar Spearman’ın Sıra İlişkisi Testi ile analiz edilmiştir. Bulanık sayıların kullanımında oluşan faydanın seviyesini belirlemek için çeşitli senaryolar üretilmiştir.

ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNİ KULLANAN MAKİNE-EKİPMAN SEÇİM ÇALIŞMALARINDA BULANIKLIĞIN SONUÇLARA ETKİSİNİN İNCELENMESİ

Bulanıklığın ve belirsizliğin bulunduğu seçim problemlerinde Çok Kriterli Karar Verme (ÇKKV) modellerinde tamsayıların yerine bulanık sayıların kullanılması tavsiye edilmektedir. Literatürde pek çok farklı ÇKKV modeli geliştirilmiş olmasına rağmen, şimdiye kadar tamsayıların yerine bulanıklığın kullanılmasının sağladığı faydayı analiz eden bir yaklaşım geliştirilmemiştir. Bu çalışmada bulanık sayıların kullanılmasının getireceği faydalar literatürde makine-ekipman seçimi çalışmalarında en sık rastlanan Bulanık ÇKKV yöntemleri olan Bulanık Analitik Hiyerarşi Süreci (BAHS) ve Bulanık TOPSIS (BTOPSIS) yöntemleri kullanılarak incelenmiştir. Çalışmada, onaltı adet işleme merkezi ve yedi adet seçim kriteri içeren bir seçim problemi oluşturulmuştur. Bulanık sayılar için tamsayı, üçgen bulanık sayı ve trapez bulanık sayı tipleri kullanılarak seçim probleminde farklı işleme merkezi sıralamaları elde edilmiştir. Sıralamalar arasındaki farklılıklar Spearman’ın Sıra İlişkisi Testi ile analiz edilmiştir. Bulanık sayıların kullanımında oluşan faydanın seviyesini belirlemek için çeşitli senaryolar üretilmiştir.

___

  • Bozdağ, C.E., Kahraman, C. & Ruan, D. (2003). Fuzzy Group Decision Making for Selection Among Computer Integrated Manufacturing Systems. Computers in Industry, 51:13–29.
  • Byun, H.S. & Lee, K.H. (2004). A Decision Support System for the Selection of Rapid Prototyping Process Using the Modified Topsis Method. International Journal of Advanced Manufacturing Technology, April: 1-10.
  • Chan, F.T.S., Chan, M.H. & Tang, N.K.H. (2000). Evaluation Methodologies for Technology Selection. Journal of Material Processing Technology, 107: 330-337.
  • Chen, C.T. (2000). Extensions of the Topsis for Group Decision-Making Under Fuzzy Environment. Fuzzy Sets and Systems, 114: 1-9.
  • Chen, Y.C. (2002). An Application of Fuzzy Set Theory to the External Performance Ealuation of Distiribution Centers in Logistics. Soft Computing, 6: 64-70.
  • Chen, M.F. & Tzeng, G.H. (2004). Combining Grey Relation and TOPSIS Concepts for Selecting an Expatriate Host Country. Mathematical and Computer Modelling, 40, (13): 1473–1490.
  • Cheng, C.H. & Lin, Y. (2002). Evaluating the Best Main Battle Tank Using Fuzzy Decision Theory with Linguistic Criteria Evaluation. European Journal of Operational Research, 142: 174–186.
  • Chiou, H.K. & Tzeng, G.H. (2005). Cheng, D.C.; Evaluating sustainable Fishing Development Strategies Using Fuzzy MCDM Approach. Omega, 33 (3): 223–234.
  • Chu, T.C. & Lin, Y.C. (2003). A Fuzzy Topsis Method for Robot Selection. The International Journal of Advanced Manufacturing Technology, 21: 284-290.
  • Duran, O. & Aguilo, J. (2007). Computer-Aided Machine-Tool Selection Based on a Fuzzy-AHP Approach. Expert Systems with Applications, In Press.
  • Jiang, B.C. & Hsu, C.H. (2003). Development of a fuzzy Decision Model for Manufacturing, 14: 169-181. Evaluation. Journal of Intelligent
  • Kahraman, C. Cebeci, U., Ruan, D. (2004). Multi-Attribute Comparison of Catering Service Companies Using Fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87: 171–184.
  • Kulak, O. & Kahraman, C. (2005). Fuzzy Multi-Attribute Selection Among Transportation Companies Using Axiomatic Design and Analytic Hierarchy Process. Information Sciences, 170, (2–4):191–210.
  • Lee, W.B., Lau, H., Liu, Z. & Tam, S. (2001). A Fuzzy Analytic Hierarchy Process Approach in Modular Product Design. Expert Systems, 18 (1): 32-42.
  • Parkan, C. & Wu, M.L. (1999). Decision Making and Performance Measurement Models with Applications to Robot Selection. Computers and Industrial Engineering, 36: 503-523.
  • Pegero, A. & Rangone, A. (1998). A Reference Framework for the Application of MADM Fuzzy Techniques to Selecting AMTS. International Journal of Production Research, 36 (2): 437-458.
  • Saaty, T.L. & Tran, L.T. (2007). On the Invalidity of Fuzzifying Numerical Judgments in the Analytic Hierarchy Proces. Mathematical and Computer Modelling, 46: 962–975.
  • Tzeng, G.H., Chiang, C.H. & Li, C.W. (2007). Evaluating Intertwined Effects in E-Learning Programs: A Novel Hybrid MCDM Model Based on Factor Analysis and DEMATEL. Expert Systems with Applications, 32: 1028–1044.
  • Wang, T.Y., Shaw, C.F. & Chen, Y.L. (2000). Machine Selection in Flexible Manufacturing Cell: A Fuzzy Multiple Attribute Decision Making Approach. International Journal of Production Research, 38 (9): 2079-2097.
  • Yu, C.S. (2001). A GP-AHP Method For Solving Group Decision-Making Fuzzy AHP Problems. Computers & Operations Research, 29(14): 1969–2001.
Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi-Cover
  • ISSN: 1303-0027
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2001
  • Yayıncı: Dokuz Eylül Üniv. İşletme Fak.