Basit Elektrik Devreleri Konusunda Üç Aşamalı Kavram Testi Geliştirilmesi

Bu çalışmanın amacı sınıf öğretmeni adaylarının basit elektrik devreleri konusu üzerine kavramsal anlamalarını belirlemek için 15 maddeden oluşan üç aşamalı bir test geliştirmektir. Testin kapsam ve görünüş geçerliği için uzman görüşü alınmıştır. Testin yapı geçerliğini belirlemede Puanlama-2 ve güven puanı arasındaki korelasyon değeri ile yanlış pozitif ve yanlış negatif puanlarının yüzdesi hesaplanmıştır. Testin güvenirlik ve madde analizi işlemleri için Cronbach’s Alpha güvenirlik katsayısı, madde güçlük ve ayırt edicilik indeksleri, nokta çift serili korelasyon katsayısı hesaplanmıştır. Analizler sonucunda Puanlama-2 türü ile güven puanı arasında orta düzeyde, pozitif, anlamlı bir ilişkiye ulaşılmıştır. Yanlış pozitif ve yanlış negatif değerlerinin %10'un altında olduğu belirlenmiştir. Bunun yanında Cronbach’s Alpha katsayısının Puanlama-1-2-3 türleri, güven puanı ve testin tamamına ilişkin değerlerin tümünde .70 ve üzerinde olduğu belirlenmiştir. Testteki maddelerin güçlük indekslerinin .30 ile .39; ayırt edicilik indekslerinin .50 ile .80, nokta çift serili korelasyon katsayısı değerlerinin ise .41 ile .86 arasında değiştiği sonucuna ulaşılmıştır. Yapılan analizler sonucunda kavram testinin yeterli düzeyde geçerli ve güvenilir bir ölçme aracı olduğu sonucuna ulaşılmıştır. Anahtar sözcükler: Fen eğitimi, basit elektrik devreleri, kavramsal anlama, üç aşamalı test.

A Study on Developing a Three-Tier Concept Test on Simple Electrical Circuits

The purpose of this study is to develop a three-tier concept test in order to determine conceptual understanding of elementary school teacher candidates on simple electrical circuits. 265 elementary school teacher candidates who are studying in the second, third and fourth grade of Dokuz Eylül University Buca Education Faculty participated in the study and the analyzes were performed on 258 elementary school teacher candidates.  Expert opinion was obtained to determine the content and face validity of the test. In determining the construct validity of the test, the correlation value between Scoring-2 and confidence score and the percentage of false positive and false negative scores were calculated. Cronbach’s Alpha reliability coefficient, item difficulty and discrimination indices, point biserial correlation coefficient value were calculated for the reliability and item analysis of the test. Consequently, a moderate, positive and meaningful correlation was found between Scoring-2 type and confidence score. False positive and false negative values were found to be less than 10%. In addition, Cronbach's alpha coefficient was calculated for the Scoring 1-2-3, confidence score and the whole test and was found to have values of .70 and above in all. It was found that item difficulty indices ranged between .30 and .39 and that the item discrimination indices were between .50 and .80. Point biserial correlation coefficient values were found to vary between .41 and .86. Consequently, it has been identified  that the concept test was adequately a valid and reliable measurement tool.

___

  • Afra, N. C., Osta, I., & Zoubeir, W. (2009). Students’ alternative conceptions about electricity and effect of inquiry-based teaching strategies. International Journal of Science and Mathematics Education, 7(1), 103-132.
  • Arslan, H. Ö., Çiğdemoğlu, C. ve Moseley, C. (2012). A three-tier diagnostic test to assess pre-service teachers’ misconceptions about global warming, greenhouse effect, ozone layer depletion, and acid rain. International Journal of Science Education, 34(11), 1667-1686.
  • Başol, G. (2016). Eğitimde ölçme ve değerlendirme (Genişletilmiş 4. Baskı). Ankara: Pegem Akademi.
  • Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750-762.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, Ş. ve Demirel, F. (2016).Bilimsel araştırma yöntemleri (21. Baskı). Ankara: Pegem Akademi.
  • Caleon, I. S., & Subramaniam, R. (2010). Do students know what they know and what they don’t know? Using a four-tier diagnostic test to assess the nature of students’ alternative conceptions. Research in Science Education, 40(3), 313-337.
  • Chiu, M. H., Guo, C. J., & Treagust, D. F. (2007). Assessing students’ conceptual understanding in science: An introduction about a national project in Taiwan. International Journal of Science Education, 29(4), 379-390.
  • Cohen, R., Eylon, B., & Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students’ concepts. American Journal of Physics, 51(5), 407-412.
  • Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Orlando, FL: Holt, Rinehart, and Winston, Inc.
  • Çataloğlu, E. (2002). Development and validation of an achievement test in introductory quantum mechanics: The quantum mechanics visualization instrument (QMVI). (Unpublished doctoral dissertation). The Pennsylvania State University, Pennsylvania.
  • Ding, L., Chabay, R., Sherwood, B., & Beichner, R. (2006). Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical Review Special Topics-Physics Education Research, 2(1), 010105-1-010105-7.
  • Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Journal Studies in Science Education, 13(1), 105-122.
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
  • Duit R. & Von Rhöneck C. (1998). Learning and understanding key concepts of electricity. In Connecting Research in Physics Education with Teacher Education (eds A.Tiberghien, E.L. Jossem & J. Barojas). International Commission on Physics Education (ICPE).
  • Ebel, R. L. (1965). Measuring educational achievement. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
  • Engelhardt, P. V., & Beichner, R. J. (2004). Students' understanding of direct current resistive electrical circuits. American Journal of Physics, 72(1), 98-115.
  • Eryılmaz, A. ve Sürmeli, E. (2002, Eylül). Üç-aşamalı sorularla öğrencilerin ısı ve sıcaklık konularındaki kavram yanılgılarının ölçülmesi. V. Ulusal Fen Bilimleri ve Matematik Eğitim Kongresi, Ankara.
  • Frederiksen, J. R., White, B. Y., & Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806-836.
  • Fredette, N., & Lochhead, J. (1980). Student conceptions of simple circuits. The Physics Teacher, 18(3), 194-198.
  • George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference (11.0 update) (4th ed.). Boston: Allyn and Bacon.
  • Hasan, S., Bagayoko, D., & Kelley, E. L. (1999). Misconceptions and the certainty of response index (CRI). Physics Education, 34(5), 294-299.
  • Heller, P. M., & Finley, F. N. (1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29(3), 259-275.
  • Hestenes, D., & Halloun, I. (1995). Interpreting the force concept inventory: A response to March 1995 critique by Huffman and Heller. The Physics Teacher, 33(8), 502-506.
  • Hopkins, K. D, Stanley, J. C., & Hopkins, B. R. (1990). Educational and psychological measurement and evaluation (7th ed.). Englewood Cliffs, NJ: Prentice Hall.
  • Jimoyiannis, A., & Komis, V. (2003). Investigating Greek students' ideas about forces and motion. Research in Science Education, 33(3), 375-392.
  • Kaltakçı-Gürel, D., Eryılmaz, A., & McDermott, L. C. (2015). A review and comparison of diagnostic instruments to identify students' misconceptions in science. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 989-1008.
  • Kırbulut, Z. D. ve Geban, Ö. (2014). Using three-tier diagnostic test to assess students’ misconceptions of states of matter. Eurasia Journal of Mathematics, Science and Technology Education, 10(5), 509-521.
  • Kırbulut, D., Geban, Ö. ve Beeth, M. E. (2010, Temmuz). Development of a three-tier multiple-choice diagnostic instrument to evaluate students’ understanding of states of matter. Paper presented at the European Conference on Research in Chemical Education (ECRICE), Krakow, Poland.
  • Lee, Y., & Law, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. International Journal of Science Education, 23(2), 111-149.
  • Libarkin, J. C., & Kurdziel, J. P. (2001). Research methodologies in science education: Assessing students' alternative conceptions, Journal of Geoscience Education, 49(4), 378-383.
  • Lin, S. W. (2004). Development and application of a two-tier diagnostic test for high school students’ understanding of flowering plant growth and development. International Journal of Science and Mathematics Education, 2(2), 175-199.
  • Loh, A. S. L., Subramaniam, R., & Tan, K. C. D. (2014). Exploring students’ understanding of electrochemical cells using an enhanced two-tier diagnostic instrument. Research in Science & Technological Education, 32(3), 229-250.
  • Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J., & Van Heuvelen, A. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(S1), S12-S23.
  • McDermott, L. C., & Shaffer, P. S. (1992). Research as a guide for curriculum development: An example from introductory electricity. Part I: Investigation of student understanding. American Journal of Physics, 60(11), 994-1003.
  • Milli Eğitim Bakanlığı [MEB] (2018). Fen Bilimleri Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara.
  • Naylor, S., & Keogh, B. (1999). Constructivism in classroom: Theory into practice. Journal of Science Teacher Education, 10(2), 93-106.
  • Osborne, R. (1983). Towards modifying children's ideas about electric current. Research in Science & Technological Education, 1(1), 73-82.
  • Özçelik, D. A. (2013). Test hazırlama kılavuzu (5. Baskı). Ankara: Pegem Akademi.
  • Palmer, D. (2001). Students' alternative conceptions and scientifically acceptable conceptions about gravity, International Journal of Science Education, 23(7), 691-706.
  • Pardhan, H., & Bano, Y. (2001). Science teachers' alternate conceptions about direct-currents. International Journal of Science Education, 23(3), 301-318.
  • Patton, M. Q. (2002). Qalitative Research & Evaluation Methods (3rd. Ed.). Thousand Oaks, California: Sage Publications Inc.
  • Peşman, H. (2005). Dokuzuncu sınıf öğrencilerinin basit elektrik devreleri ile ilgili kavram yanılgılarını ölçmek amacıyla üç basamaklı bir testin geliştirilmesi. (Yayınlanmamış Yüksek Lisans Tezi). Ortadoğu Teknik Üniversitesi, Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü, Ankara.
  • Peşman, H. ve Eryılmaz, A. (2010). Development of a three-tier test to assess misconceptions about simple electric circuits. The Journal of Educational Research, 103(3), 208-222.
  • Picciarelli, V., Di Gennaro, M., Stella, R., & Conte, E. (1991). A study of university students' understanding of simple electric circuits part 1: Current in dc circuits. European Journal of Engineering Education, 16(1), 41-56.
  • Roberts, P., Priest, H., & Traynor, M. (2006). Reliability and validity in research. Nursing Standard, 20(44), 41-45.
  • Shipstone, D. M. (1984). A study of children's understanding of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185-198.
  • Shipstone, D. M., Rhöneck, C. V., Jung, W., Kärrqvist, C., Dupin, J. J., Johsua, S. E., et al. (1988). A study of students’ understanding of electricity in five European countries. International Journal of Science Education, 10(3), 303-316.
  • Şen, Ş. ve Yılmaz, A. (2017). The development of a three-tier chemical bonding concept test. Journal of Turkish Science Education, 14(1), 110-126.
  • Tan, K. C. D., Goh, N. K., Chia, L. S., & Treagust, D. F. (2002). Development and application of a two-tier multiple choice diagnostic instrument to assess high school students’ understanding of inorganic chemistry qualitative analysis. Journal of Research in Science Teaching, 39(4) 283–301.
  • Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
  • Treagust, D. F., & Haslam, F. (1986). Evaluating secondary students' misconceptions of photosynthesis and respiration in plants using a two-tier diagnostic instrument. A Paper presented at the 59th annual meeting of the National Association for Research in Science Teaching (San Francisco, CA). (ERIC Document Reproduction Service No. ED283713).
  • Tsai, C. C., & Chou, C. (2002). Diagnosing students' alternative conceptions in science. Journal of Computer Assisted Learning, 18(2), 157-165.
  • Wild, T. A., Hilson, M. P., & Hobson, S. M. (2013). The conceptual understanding of sound by students with visual impairments. Journal of Visual Impairment & Blindness, 107(2), 107-116.
  • Wuttiprom, S., Sharma, M.D., Johnston, I. D., Chitaree, R., & Soankwan, C. (2009). Development and use of a conceptual survey in ıntroductory quantum physics. International Journal of Science Education, 31(5), 631-654.
  • Yang, D. C., & Lin, Y. C. (2015). Assessing 10-to 11-year-old children’s performance and misconceptions in number sense using a four-tier diagnostic test. Educational Research, 57(4), 368-388.