Oto Yıkama Atıksularının Klasik Fenton Prosesiyle Arıtımı: Ön Çöktürmenin KOİ Giderim Kinetiği Üzerine Etkisi

Nüfusa paralel olarak trafikteki araç sayısı da her geçen gün artmaktadır. Dolayısıyla araçların yıkanmasından kaynaklananatıksuların miktarı da önemli boyutlara ulaşmaktadır. Bu atıksuların çoğu evsel atıksu sınıfında olmayıp doğrudan kanalizasyonaverilmektedir. Bu çalışmada, 2 farklı oto yıkama tesisine ait 4 tip (ham ve ön çökeltim uygulanmış) atıksuda kimyasal oksijen ihtiyacı(KOİ) giderimi amacıyla klasik Fenton prosesi uygulanmıştır. Deneysel çalışmalar sonunda sabit pH = 3 değerinde, optimumkimyasal dozlar; 1 nolu tesisten alınan ham atıksu için: $\lbrack F^{+2}\rbrack$ = 100 mg $L^{-1}$, $\lbrack H_2O_2\rbrack$ = 200 mg $L^{-1}$ve ön arıtım uygulanan örnek içinbu değerler $\lbrack F^{+2}\rbrack$ = 75 mg $L^{-1}$, $\lbrack H_2O_2\rbrack$ = 150 mg $L^{-1}$ olarak tespit edilirken, 2 nolu tesisten alınan ham atıksu için $\lbrack F^{+2}\rbrack$ = 100 mg$L^{-1}$, $\lbrack H_2O_2\rbrack$ = 225 mg $L^{-1}$, ön çökeltim uygulandıktan sonra ise $\lbrack F^{+2}\rbrack$ = 75 mg $L^{-1}$, $\lbrack H_2O_2\rbrack$ = 100 mg $L^{-1}$ olarak belirlenmiştir.Prosesin arıtım verimliliği değerlendirildiğinde, optimum koşullarda KOİ giderimi 1. Atıksu örneği için sırasıyla, %86 ve %89 iken2. örnekte ise bu değerler sırasıyla %90 ve %98’dir. Reaksiyon kinetiği incelendiğinde, ham atıksularda oksidasyon mekanizmasınıngenel itibariyle 2. derece kinetiğe uygun olduğu görülse de ($R^2$=0,55 ve 0,95) ön çöktürme sonrası ayrışma mekanizmasının BMGkinetik modeline daha fazla uyum gösterdiği ($R^2$=0,99) ortaya çıkarılmıştır.

Treatment of Auto Wash Wastewater with Classical Fenton Process: Effect of PreSettling on COD Removal Kinetics

In parallel with the population, the number of vehicles in traffic is increasing day by day. Therefore, the volume of wastewater generated by vehicle cleaning reaches substantial proportions. While most of these wastewaters are not classified as domestic wastewater, they are directly discharged to the sewerage. In this study, classical Fenton process was applied to remove chemical oxygen demand (COD) from 4 types (raw and pre-treated) wastewater belonging to 2 different car wash plants. At the end of experimental studies, optimum chemical doses at a constant pH = 3 value; for the sample taken from the 1nd plant without presettling:[Fe+ 2]= 100 mg $L^{-1}$ , $\lbrack H_2O_2\rbrack$ = 200 mg $L^{-1}$ and for the sample treated with pretreatment these values $\lbrack F^{+2}\rbrack$= 75 mg $L^{-1}$, $\lbrack H_2O_2\rbrack$= 150 mg $L^{-1}$ , for the raw wastewater sample taken from the 2nd plant, $\lbrack F^{+2}\rbrack$= 100 mg $L^{-1}$ , $\lbrack H_2O_2\rbrack$= 225 mg $L^{-1}$ , after presettling whereas $\lbrack F^{+2}\rbrack$= 75 mg $L^{-1}$ , $\lbrack H_2O_2\rbrack$= 100 mg $L^{-1}$ . COD removal in ideal conditions for the first wastewater sample is 86 percent and 89 percent, respectively, while these values are 90 percent and 98 percent for the second sample. The oxidation process in raw wastewater was found to be generally appropriate for 2nd order kinetics ($R^2$= 0.55 and 0.95), but the decomposition mechanism after pre-settling was found to be more consistent with the BMG kinetic model ($R^2$ = 0.99).

___

  • Allan C., Pereira M., Brito N.N., (2018), Integration of treatment technologies with Fenton reagent for laboratory effluent remediation, Ambiente e Agua, An Interdisciplinary Journal of Applied Science, 13(5), doi:10.4136/1980-993x
  • Argun M.E., Alver A., Karatas M., (2017), Optimization of landfill leachate oxidation at extreme conditions and determination of micropollutants removal. Desalination and Water Treatment, 90, 130-138, doi: 10.5004/dwt.2017.21241.
  • Argun Y.A., (2012), Reaktif Mavi 114 boyasının Fenton prosesi ile giderimi, Yüksek Lisans Tezi, Aksaray Üniversitesi Fen Bilimleri Enstitüsü, Aksaray.
  • Babuponnusami A., Muthukumar K., (2014), A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2, 557–572.
  • Baştürk E., Karataş M., (2014), Advanced oxidation of Reactive Blue 181 solution: A comparison between Fenton and sonoFenton process, Ultrasonics Sonochemistry, 21, 1881-1885.
  • Bayat F., (2013), Zeytin karasularının elektro-fenton yöntemi ile arıtılabilirliğinin incelenmesi, Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Enstitüsü Mühendislik ve Fen Bilimleri Enstitüsü, Gebze.
  • Behnajady M.A., Modirshahla N., Ghanbary F., (2007), A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process, Journal of Hazardous Materials, 148(1-2), 98-102.
  • Bello M.M., Raman A.A., Asghar A., (2019), A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment, Process Safety and Environmental Protection, 126, 119-140.
  • Bhatti Z.A., Mahmood Q., Raja I.A., Malik A.H., Wu D., (2011), Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution, Journal of Physics and Chemistry of the Earth, 36, 465–469.
  • Boluarte I.A.R., Andersen M., Pramanik B.K., Chang C.Y., Bagshaw S., Farago L., Jegatheesan V., Shu L., (2016), Reuse of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes, International Biodeterioration & Biodegradation, 113, 44-48.
  • Brito, N.N., Paterniani, J.E.S., Brota, G.A., Pelegrini, R.T., (2010), Ammonia removal from leachate by photochemical process using H2O2, Ambiente & Água-An Interdisciplinary Journal of Applied Science, 5(2), 51-60.
  • Chen Y., Fan T., Wang L., Cheng T., Chen S., Yuan M., Cheng S., (2020), Application of Fenton method for the removal of organic matter in sewage sludge at room temperature, Sustainability, 12, 1518, doi:10.3390/su12041518.
  • Chu L., Wanga J., Dong J., Liu H., Sun X., (2012), Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide, Chemosphere, 86, 409-414.
  • Collivigranelli M.C., Pedrazzani R., Sorlini S., Abba A., Bertanza G., (2017), H2O2 based oxidation processes for the treatment of real high strength aqueous wastes, Sustainability, 9, 244, doi:10.3390/su9020244.
  • Cüce H., Aydın Temel F., (2021), Classical‐Fenton and photo‐Fenton oxidation of wastewater arising from cosmetic automobile care products. Environmental Progress & Sustainable Energy, e13701, doi:10.1002/ep.13701 .
  • Cüce H., Yakut Ş.M., Özak E., (2018), Halı yıkama atıksularının ileri oksidasyon prosesi ile arıtımı, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 339-348.
  • Davarnejad R., Sarvmeili K., Sabzehei M., (2019), Car wash wastewater treatment using an advanced oxidation process: A rapid technique for the COD reduction of water pollutant sources, Journal of the Mexican Chemical Society, 63(4), 164-175.
  • Dolay E., (2009), Emaye kaplama endüstrisi atıksularının fenton prosesi ile arıtılması, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Emamjomeh M.M., Jamali H.A., Naghdali Z., Mousazadeh M., (2019), Efficiency of electrocoagulation, sedimentation and filtration hybrid process in removing chemical oxygen demand and turbidity from carwash industrial wastewater: Optimization by response surface methodology. Journal of Mazandaran University of Medical Sciences, 29(174), 106-120.
  • Ertugay N., Filiz N.A., (2017), Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study, Arabian Journal of Chemistry, 10, 1158-1163.
  • Gamaralalage D., Sawai O., Nunoura T., (2019), Reusing the generated sludge as Fe source in Fenton process for treating crepe rubber wastewater, Journal of Material Cycles and Waste Management, 21(2), 248-257.
  • Ganiyu S.O., Huong Le T.X., Bechelany M., Oturan N., Papirio S., Esposito G., Hullebusch E., Cretin M., Oturan M.A., (2018), Electrochemical mineralization of sulfamethoxazole over wide pH range using FeIIFeIII LDH modified carbon felt cathode: Degradation pathway, toxicity and reusability of the modified cathode, Chemical Engineering Journal, 350, 844-855.
  • Gokkus O., Ciner F., (2010), Investigation of color and COD removal from wastewater containing disperse Yellow 119 and disperse Red 167 using Fenton oxidation process, Journal of the Faculty of Engineering and Architecture of Gazi University, 25(1), ss.49- 55.
  • Gönder Z.B., Balcıoglu G., Vergili I., Kaya Y., (2017), Electrochemical treatment of carwash wastewater using Fe and Al electrode: techno-economic analysis and sludge characterization, J. Environ. Manage. 200, 380–390, doi:10.1016/j. jenvman.2017.06.005.
  • Gönder Z.B., Balcıoğlu G., Vergili I., Kaya Y., (2020), An integrated electrocoagulation–nanofiltration process for carwash wastewater reuse. Chemosphere, 253, 126713, doi: 10.1016/j.chemosphere.2020.126713.
  • Hamada T., Miyazaki Y., (2004), Reuse of carwash water with a cellulose acetate ultrafiltration membrane aided by flocculation and activated carbon treatments, Desalination, 169(3), 257-267.
  • Kalipci E., Sahinkaya S., Dortkol M., Aras S., (2016), Decolorization of basic textile dyes using a novel adsorbent modification method: Ultrasonic-acid modification. International Journal of Environmental Research, 10(1), 31-40.
  • Kashi G., Younesi S., Heidary A., Akbarishahabi Z., Kavianpour B., Rezaei Kalantari R., (2021), Carwash wastewater treatment using the chemical processes, Water Science and Technology, doi:10.2166/wst.2021.206.
  • Kaya Ş., Aşçı Y., (2019), Evaluation of color and COD removal by Fenton and photo-Fenton processes from industrial paper wastewater, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(3),1539-1550.
  • Kocakaplan N., Ertugay N., Malkoç E., (2014), Fenton ve Fenton-benzeri ileri oksidasyon yöntemleri ı̇le Acid Yellow 36 boyar maddesinin giderimi, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(1), 41-48.
  • Kumar K., Vasanth K., Porkodi Rocha F., (2008), Langmuir–Hinshelwood kinetics–a theoretical study, Catalysis Communications 9(1), 82-84.
  • Lan W., Gang G.E., Jinbao W.L., (2009), Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29, Journal of Environmental Sciences, 21(2), 237– 242.
  • Lau W.J., Ismail A.F., Firdaus S., (2013), Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes, Separation and purification Technology, 104, 26-31.
  • Lin S.H., Lo C.C., (1997), Fenton process for treatment of desizing wastewater, Water Res. 31:2050–2056
  • Magnago R.F., Berselli D., Medeiros P., (2018), Treatment of wastewarer from car wash by Fenton and photo-Fenton oxidative processes. J. Eng. Sci. Technol, 13(4), 838-850.
  • Moazzem S., Ravishankar H., Fan L., Roddick F., Jegatheesan V., (2020), Application of enhanced membrane bioreactor (eMBR) for the reuse of carwash wastewater, Journal of environmental management, 254, 109780, doi: 10.1016/j.jenvman.2019.109780.
  • Oknich J., (2002), Handbook for the perceived environmental impact of car washing. Ramsey-Washington Metro Watershed District. Washington.
  • Onaran G., Gürel L., Argun H., (2020), Detoxification of waste hand paper towel hydrolysate by activated carbon adsorption. International Journal of Environmental Science and Technology, 17(2), 799-808.
  • Özdemir C., Öden M.K., Şahinkaya S., Kalipci E., (2011), Color removal from synthetic textile wastewater by sono‐fenton process. Clean–Soil, Air, Water, 39(1), 60-67.
  • Panizza M., Cerisola G., (2010), Applicability of electrochemical methods to carwash wastewaters for reuse. Part 2: Electrocoagulation and anodic oxidation integrated process, Journal of electroanalytical chemistry, 638(2), 236-240.
  • Sarmadi M., Foroughi M., Saleh H.N., Sanaei D., Zarei A.A., Ghahrchi M., Bazrafshan E., (2020), Efficient technologies for carwash wastewater treatment: a systematic review. Environmental Science and Pollution Research, 27, 34823-34839.
  • Şentürk İ., Yıldız M.R., (2020), Highly efficient removal from aqueous solution by adsorption of Maxilon Red GRL dye using activated pine sawdust. Korean Journal of Chemical Engineering, 37, 985-999.
  • Sychev A.Y., Isak V.G., (1995), Iron compounds and the mechanism of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates, Russ. Chem. Rev. 64, 1105–1129.
  • Tony M.A., Bedri Z., (2014), Experimental design of photo-Fenton reactions for the treatment of car wash wastewater effluents by response surface methodological analysis, Advances in Environmental Chemistry, Vol. 2014, 8ss, doi:10.1155/2014/958134.
  • Tony M.A., Lin L.S., (2020), Performance of acid mine drainage sludge as an innovative catalytic oxidation source for treating vehicle-washing wastewater, Journal of Dispersion Science and Technology, 1-11, doi:10.1080/01932691.2020.1813592.
  • Üstün G.E., Solmaz S.K.A., Morsünbül T., Azak H.S., (2010), Advanced oxidation and mineralization of 3-indole butyric acid (IBA) by Fenton and Fenton-like processes, Journal of hazardous materials, 180(1-3), 508-513.
Doğal Afetler ve Çevre Dergisi-Cover
  • ISSN: 2528-9640
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Artvin Çoruh Üniversitesi Doğal Afetler Uygulama ve Araştırma Merkezi