ZnO-Grafen Nanokompozitinin Sol-Jel Yöntemiyle Üretimi ve Fotokatalizör Olarak Kullanılması

Bu çalışmada Grafen-ZnO kompozitinin üretimi ve kısmi fotokatalitik özellikleri incelenmiştir. Kompozitte takviye elemanı olarak kullanılan grafen nano tabakalar sıvı faz eksfolasyon yöntemi ile üretilmiştir. Elde edilen bu tabakalar Sol-Jel prosesi sırasında ilave edilerek ZnO ile grafenin homojen karışması sağlanmıştır. Hatta bazı bölgelerde grafenler ZnO partikülleri tarafından sarılmıştır. Sentezlenen grafenin karakterizasyonu geçirmeli elektron mikroskobu ve X-ışını analizleri ile yapılmıştır. Elde edilen kompozitin ise karakterizasyonu taramalı elektron mikroskobu ile yapılmıştır. Grafen-ZnO kompoziti kullanılarak RR195 boyarmaddenin fotokatalitik degradasyon yapılmıştır. Bunun sonucunda, ortamdaki Grafen-ZnO kompoziti konsantrasyonunun artışına paralel olarak renk giderim verimi 10,0 g/L Grafen-ZnO kompoziti konsantrasyonuna kadar artmıştır. Benzer eğilim TOC giderimi için de gözlemlenmiştir. Fotokatalitik reaksiyon süresi sonunda (90 dk) 10,0 g/L Grafen-ZnO kompoziti kullanılan ortamda maksimum renk ve TOC giderim verimleri sırasıyla %98,50 ve %89,3 olarak ölçülmüştür.

Production of ZnO- Graphene Nanocomposite by Sol-Gel Method and used as a Photocatalyst

In this study, production and partial photocatalytic properties of the Graphene-ZnO composites were investigated. Graphene nano layers used as reinforcement element in the composite were produced via liquid phase exfoliation method. These nano layers were added during the sol-gel process to ensure homogeneous mixing of ZnO with the graphene. In some regions, graphene layers were observed to be surrounded by ZnO particles. Characterization of the synthesized graphene was carried out via transmission electron microscopy (TEM) and X-ray analysis. Photocatalytic degradation of the RR195 colorant was carried out by using ZnO-graphene composites. As a result, with increasing concentration of Graphene–ZnO composite in the environment, the color removal efficiency increased to 10.0 g/L Graphene–ZnO composition concentration. A similar propensity was observed for TOC removal. At the end of the photocatalytic reaction (90 min), in the environment using 10.0 g/L Graphene–ZnO composition, maximum color and TOC removal efficiencies were measured as 98.50% and 89.3%, respectively.

___

  • Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., Xia, X.H. 2009. A Green Approach to the Synthesis of Graphene Nanosheets. Acs Nano, 3(9), 2653-2659.
  • Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G. 2008. Processable Aqueous Dispersions of Graphene Nanosheets. Nature Nanotechnology, 3(2), 101-105.
  • Xiang, Q.J., J.G. Yu, M. Jaroniec, 2012. Graphene-based Semiconductor Photocatalysts. Chemical Society Reviews, 41(2), 782-796.
  • Sun, Y.Q., Wu, Q.O., Shi, G.Q. 2011. Graphene Based New Energy Materials. Energy & Environmental Science, 4(4), 1113-1132.
  • Stankovich, S., Dikin, D.A., Dommett, G.H.B. Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S. 2006. Graphene-based Composite Materials. Nature, 442(7100), 282-286.
  • Wang, K., Ruan, J., Song, H., Zhang, J.L., Wo, Y., Guo, S.W., Cui, D.X. 2011. Biocompatibility of Graphene Oxide. Nanoscale Research Letters, 6(8), 1-8.
  • Wang, Q., Guo, X.F., Cai, L.C., Cao, Y., Gan, L., Liu, S., Wang, Z.X., Zhang, H.T., Li, L.D. 2011. TiO2-decorated Graphenes as Efficient Photoswitches with High Oxygen Sensitivity. Chemical Science, 2(9), 1860-1864.
  • Park, S., Mohanty, N., Suk, J.W., Nagaraja, A., An, J.H., Piner, R.D., Cai, W.W., Dreyer, D.R., Berry, V., Ruoff, R.S. 2010. Biocompatible, Robust Free-Standing Paper Composed of a TWEEN/Graphene Composite. Advanced Materials, 22(15), 1736-1740.
  • Cai, W.B., Chen, X.Y. 2007. Nanoplatforms for Targeted Molecular Imaging in Living Subjects. Small, 3(11), 1840-1854.
  • Akhavan, O., Ghaderi, E., Esfandiar, A. 2011. Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. Journal of Physical Chemistry B, 115(19), 6279-6288.
  • Park, S., Ruoff, R.S. 2009. Chemical Methods for the Production of Graphenes. Nature Nanotechnology, 4(4), 217-224.
  • Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H.B., Bulovic, V., Dresselhaus, M.S., Kong, J. 2009. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9(1), 30-35.
  • Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M. 2009. Longitudinal Unzipping of Carbon Nanotubes to form Graphene Nanoribbons. Nature, 458(7240), 872-875.
  • Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., Aksay, I.A. 2006. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. Journal of Physical Chemistry B, 110(17), 8535-8539.
  • Yang, Y., Ren, L.L., Zhang, C., Huang, S., Liu, T.X. 2011. Facile Fabrication of Functionalized Graphene Sheets (FGS)/ZnO Nanocomposites with Photocatalytic Property. Acs Applied Materials & Interfaces, 3(7), 2779-2785.
  • Wang, S., Goh, B.M., Manga, K.K., Bao, Q.L., Yang, P., Loh, K.P. 2010. Graphene as Atomic Template and Structural Scaffold in the Synthesis of Graphene-Organic Hybrid Wire with Photovoltaic Properties. Acs Nano, 4(10), 6180-6186.
  • Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T. 2005. Recent Progress in Processing and Properties of ZnO. Progress in Materials Science, 50(3), 293-340.
  • Lee, K.R., Park, S., Lee, K.W. 2003. Rapid Ag Recovery Using Photocatalytic ZnO Nanopowders Prepared by Solution-combustion Method. Journal of Materials Science Letters, 22(1), 65-67.
  • Chouhan, N., Ameta, R., Meena, R.K., Mandawat, N., Ghildiyal, R. 2016. Visible Light Harvesting Pt/CdS/Co-doped ZnO Nanorods Molecular Device for Hydrogen Generation. International Journal of Hydrogen Energy, 41(4), 2298-2306.
  • Wang, L., Ji, Z.Y., Lin, J.J., Li, P. 2017. Preparation and Optical and Photocatalytic Properties of Ce-doped ZnO Microstructures by Simple Solution Method. Materials Science in Semiconductor Processing, 71, 401-408
  • Janotti, A., Van de Walle, C.G. 2009. Fundamentals of Zinc Oxide as a Semiconductor. Reports on Progress in Physics, 72(12), 1-29.
  • Dou, S.M., Liu, Q.H., Wang, W.L., Liu, X.M. 2010. Highly Ordered Lattice Orientation of ZnO Nanoparticles Formed in Confined Space. Chinese Journal of Chemical Physics, 23(4), 484-490.
  • Guo, G., Guo, J., Tao, D., Choy, W.C.H., Zhao, L., Qian, W., Wang, Z. 2007. A Simple Method to Prepare Multi-walled Carbon Nanotube/ZnO Nanoparticle Composites. Applied Physics a-Materials Science & Processing, 89(2), 525-528.
  • Jiang, L.Q., Gao, L. 2005. Fabrication and Characterization of ZnO-coated Multi-walled Carbon Nanotubes with Enhanced Photocatalytic Activity. Materials Chemistry and Physics, 91(2-3), 313-316.
  • Zhang, N., Sun, J., Jiang, D.Y., Feng, T., Li, Q. 2009. Anchoring Zinc Oxide Quantum Dots on Functionalized Multi-walled Carbon Nanotubes by Covalent Coupling. Carbon, 47(5), 1214-1219.
  • Zhang, R.X., Fan, L.Z., Fang, Y.P., Yang, S.H. 2008. Electrochemical Route to the Preparation of Highly Dispersed Composites of ZnO/carbon Nanotubes with Significantly Enhanced Electrochemiluminescence from ZnO. Journal of Materials Chemistry, 18(41), 4964-4970.
  • Zhu, L.P., Liao, G.H., Huang, W.Y., Ma, L.L., Yang, Y., Yu, Y., Fu, S.Y. 2009. Preparation, Characterization and Photocatalytic Properties of ZnO-coated Multi-walled Carbon Nanotubes. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 163(3), 194-198.
  • Guler, O., Guler, S.H., Selen, V., Albayrak, M.G., Evin, E. 2016. Production of Graphene Layer by Liquid-phase Exfoliation with Low Sonication Power and Sonication Time from Synthesized Expanded Graphite. Fullerenes Nanotubes and Carbon Nanostructures, 24(2), 123-127.
  • Kavitha, T., Gopalan, A.I., Lee, K.P., Park, S.Y. 2012. Glucose Sensing, Photocatalytic and Antibacterial Properties of Graphene-ZnO Nanoparticle Hybrids. Carbon, 50(8), 2994-3000.
  • Dursun, A.Y., Tepe, O. 2011. Removal of Chemazol Reactive Red 195 from Aqueous Solution by Dehydrated Beet Pulp Carbon. Journal of Hazardous Materials, 194, 303-311.
  • Kalantary, R.R., Shahamat, Y.D., Farzadkia, M., Esrafili, A., Asgharnia, H. 2015. Photocatalytic Degradation and Mineralization of Diazinon in Aqueous Solution Using Nano-TiO2(Degussa, P25): Kinetic and Statistical Analysis. Desalination and Water Treatment, 55(2), 555-563.
  • Karaoglu, M.H., Ugurlu, M. 2010. Studies on UV/NaOCl/TiO2/Sep Photocatalysed Degradation of Reactive Red 195. Journal of Hazardous Materials, 174(1-3), 864-871.
  • Rauf, M.A., Meetani, M.A., Hisaindee, S. 2011. An Overview on the Photocatalytic Degradation of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals. Desalination, 276(1-3), 13-27.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ