Stereolitografi (SLA) Tekniği ile Basılan 3 Boyutlu Polimer Yapılarda İkincil Kürleme Süresinin Mekanik Özelliklere Etkisi

Sıvı fotoduyarlı reçine ve lazer ışığı kullanılarak yüksek boyutsal hassasiyetin elde edildiği Stereolitografi (SLA) yöntemi, eklemeli imalat yöntemleri arasında en dikkat çeken tekniklerden birisi olmuştur. Bu çalışmada, SLA cihazı kullanılarak 3B polimer parçalar basılmış, ikincil kürleme süresinin polimer yapıların mekanik (çekme testi, çentik darbe testi) ve termal (diferansiyel taramalı kalorimetre (DSC) analizi) özelliklerine etkisini incelemek için farklı sürelerde (30, 60, 180 ve 300 dk) UV ikincil kürleme işlemi uygulanmıştır. İşlem uygulanmış polimerlerin elastisite modülü değerinde yaklaşık %49’luk bir artış gerçekleşmiş ve 63,71 MPa mertebelerine ulaşılmıştır. DSC analiz sonuçları 180 dakika ve üzeri ikincil kürleme proseslerinin karbon-karbon çift bağlarının oluşması için yeterli olduğunu göstermektedir.

The Effect of Post-Curing Time on Mechanical Properties in 3D Polymer Materials Printed by Stereolithography (SLA) Method

Stereolithography (SLA) is one of the most attractive methods in additive manufacturing approaches since obtained high dimensional sensitivity using liquid photosensitive resin and laser light. In this study, 3D polymer materials were fabricated by SLA device, and the ultraviolet post-curing process was applied at different durations (30, 60, 180, and 300 min) to investigate the effect of post-curing time on mechanical (tensile, Charpy impact tests) and thermal (DSC) properties of polymer materials. Elasticity Modulus value of post-cured polymer materials was increased by approximately 49% and achieved the level of 63.71 MPa. It was shown with the results of DSC analysis that the post-curing processes with the 180 min. and above is adequate since the carbon-carbon double bonds occurred.

___

  • 1. Choi, N., Kulitckii, V., Kottke, J., Kavakbasi, B.T., Choe, J., Yu, J.H., Yang, S., Park, J.H., Lee, J.S., Wilde, G., Divinski, S.V., 2020. Analyzing the “Non-equilibrium State” of Grain Boundaries in Additively Manufactured High-entropy CoCrFeMnNi Alloy Using Tracer Diffusion Measurements. Journal of Alloys and Compounds, 155757, 1-10.
  • 2. Gibson, I., Rosen, D., Stucker, B., 2015. Introduction and Basic Principles. Additive Manufacturing Technologies, 1–18.
  • 3. Kenevisi, M.S., Lin, F., 2020. Selective Electron Beam Melting of High Strength Al2024 Alloy; Microstructural Characterization and Mechanical Properties. Journal of Alloys and Compounds, 155866, 1- 9.
  • 4. Eyers, D.R., Potter, A.T., 2017. Industrial Additive Manufacturing: A manufacturing systems perspective. Computers in Industry, 92-93, 208–218.
  • 5. Delgado Camacho, D., Clayton, P., O’Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., Salamone, S., 2018. Applications of Additive Manufacturing in the Construction Industry-A Forward-looking Review. Automation in Construction, 89, 110–119.
  • 6. Gebhardt, A., 2011. Layer Manufacturing Processes. Understanding Additive Manufacturing, 31–63.
  • 7. Frazier, W.E., 2014. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 23(6), 1917-1928. doi:10.1007/s11665-014-0958-z .
  • 8. Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., 2016. Additive Manufacturing of Metals. Acta Materialia, 117, 371–392.
  • 9. Gebhardt, A., Hötter, J.S., 2016. Basics, Definitions, and Application Levels. Additive Manufacturing, 1–19.
  • 10. Bose, S., Ke, D., Sahasrabudhe, H., Bandyopadhyay, A., 2018. Additive Manufacturing of Biomaterials. Progress in Materials Science, 93, 45–111.
  • 11. Aktitiz, İ., Varol, R., Akkurt, N., Saraç, M.F., 2020. In-situ Synthesis of 3D Printable Mono- and Bi-metallic (Cu/Ag) Nanoparticles Embedded Polymeric Structures with Enhanced Electromechanical Properties. Polymer Testing, 106724, 1-8.
  • 12. Javaid, M., Haleem, A., 2017. Additive Manufacturing Applications in Medical Cases:A Literature Based Review. Alexandria Journal of Medicine, 411-422.
  • 13. Saraç, M.F., Oranlı, A., Aktitiz, İ., Yalçın, B.S., Varol, R., 2019. 3B Basılabilir Füme Silika Takviyeli Foto-Duyarlı Polimerlerin Mekanik Özelliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 1793- 1805.
  • 14. Saraç, M.F., Mert, M., Bülbül, İ., Aktitiz, İ., Yalçın, B.S., Varol, R., 2019. Stereolitrografi ile 3B Basılabilir Nanokil Takviyeli Polimer Yapıların Mekanik Karakterizasyonu. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1584-1593.
  • 15. Weng, Z., Zhou, Y., Lin, W., Senthil, T., Wu, L., 2016. Structure-property Relationship of Nano Enhanced Stereolithography Resin for Desktop SLA 3D Printer. Composites Part A: Applied Science and Manufacturing, 88, 234–242.
  • 16. Yun, J.S., Park, T.W., Jeong, Y.H., Cho, J.H., 2016. Development of Ceramic-reinforced Photopolymers for SLA 3D Printing Technology. Applied Physics A, 122 (6), 1-6.
  • 17. Skowyra, J., Pietrzak, K., Alhnan, M.A., 2015. Fabrication of Extended-release Patient- tailored Prednisolone Tablets Via Fused Deposition Modelling (FDM) 3D Printing. European Journal of Pharmaceutical Sciences, 68, 11–17.
  • 18. Goyanes, A., Chang, H., Sedough, D., Hatton, G.B., Wang, J., Buanz, A., Basit, A.W., 2015. Fabrication of Controlled-release Budesonide Tablets Via Desktop (FDM) 3D Printing. International Journal of Pharmaceutics, 496(2), 414–420.
  • 19. Fina, F., Goyanes, A., Gaisford, S., Basit, A.W., 2017. Selective Laser Sintering (SLS) 3D Printing of Medicines. International Journal of Pharmaceutics, 529(1-2), 285–293.
  • 20. Gan, X., Wang, J., Wang, Z., Zheng, Z., Lavorgna, M., Ronca, A., Fei, G., Xia, H. 2019. Simultaneous Realization of Conductive Segregation Network Microstructure and Minimal Surface Porous Macrostructure by SLS 3D Printing. Materials & Design, 107874, 1-10.
  • 21. Mueller, B., Kochan, D., 1999. Laminated Object Manufacturing for Rapid Tooling and Patternmaking in Foundry Industry. Computers in Industry, 39(1), 47–53.
  • 22. Zhang, Y., He, X., Du, S., Zhang, J., 2001. Al2O3 Ceramics Preparation by LOM (Laminated Object Manufacturing). The International Journal of Advanced Manufacturing Technology, 17(7), 531–534.
  • 23. Utela, B., Storti, D., Anderson, R., Ganter, M., 2008. A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP). Journal of Manufacturing Processes, 10(2), 96–104.
  • 24. Moon, J., Caballero, A.C., Hozer, L., Chiang, Y.M., Cima, M.J., 2001. Fabrication of Functionally Graded Reaction İnfiltrated SiC– Si Composite by Three-dimensional Printing (3DP™) Process. Materials Science and Engineering: A, 298(1-2), 110–119.
  • 25. Cortina, M., Arrizubieta, J., Calleja, A., Ukar, E., Alberdi, A., 2018. Case Study to Illustrate the Potential of Conformal Cooling Channels for Hot Stamping Dies Manufactured Using Hybrid Process of Laser Metal Deposition (LMD) and Milling. Metals, 8(2), 102.
  • 26. Azarniya, A., Colera, X.G., Mirzaali, M.J., Sovizi, S., Bartolomeu, F., Weglowski, M., Wits, W.W., Yap, C.Y., Ahn, J., Miranda, G., Silva, F.S., Hosseini, H.R.M., Ramakrishna, S. ve Zadpoor, A.A., 2019. Additive Manufacturing of Ti–6Al–4V Parts Through Laser Metal Deposition (LMD): Process, Microstructure, and Mechanical Properties. Journal of Alloys and Compounds, 804, 163- 191.
  • 27. Taormina, G., Sciancalepore, C., Bondioli, F., Messori, M., 2018. Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles. Polymers, 10(2), 212.
  • 28. Manapat, J.Z., Chen, Q., Ye, P., Advincula, R.C., 2017. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromolecular Materials and Engineering, 302(9), 1600553, 1-13.
  • 29. Zhao, J., Yang, Y., Li, L., 2020. A Comprehensive Evaluation for Different Post- curing Methods Used in Stereolithography Additive Manufacturing. Journal of Manufacturing Processes, 56, 867–877.
  • 30. De Pasquale, G., Bertana, V., Scaltrito, L., 2018. Experimental Evaluation of Mechanical Properties Repeatability of SLA Polymers for Labs-on-chip and bio-MEMS. Microsystem Technologies, 24(8), 3487–3497.
  • 31. Karalekas, D., Aggelopoulos, A., 2003. Study of Shrinkage Strains in a Stereolithography Cured Acrylic Photopolymer Resin. Journal of Materials Processing Technology, 136(1-3), 146–150.
  • 32. Salmoria, G.V., Ahrens, C.H., Beal, V.E., Pires, A.T.N., Soldi, V., 2009. Evaluation of Post-curing and Laser Manufacturing Parameters on the Properties of SOMOS 7110 Photosensitive Resin Used in Stereolithography. Materials & Design, 30(3), 758–763.
  • 33. León, A.S., de Molina, S.I., 2020. Influence of the Degree of Cure in the Bulk Properties of Graphite Nanoplatelets Nanocomposites Printed via Stereolithography. Polymers, 12(5), 1103.
  • 34. Mendes-Felipe, C., Patrocinio, D., Laza, J.M., Ruiz-Rubio, L., Vilas, J.L., 2018. Evaluation of Postcuring Process on the Thermal and Mechanical Properties of the Clear02™ Resin Used in Stereolithography. Polymer Testing,115-121.
  • 35. Weng, Z., Zhou, Y., Lin, W., Senthil, T., Wu, L., 2016. S tructure-property Relationship of Nano Enhanced Stereolithography Resin for Desktop SLA 3D Printer. Composites Part A: Applied Science and Manufacturing, 88, 234-242.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ