Sac Metallerin Şekillendirilmesinde Farklı bir Uygulama: Plastik Enjeksiyon Kalıplamada Akışkan Basıncıyla Alüminyum Sacın Şekillendirilmesi

Plastik enjeksiyon ile kalıplama yöntemi, plastikler için bir imalatı yöntemi olmasına rağmen, sıvı basıncı ile şekillendirme esas alınarak sac metallerin şekillendirilmesi için kullanılabilmektedir. Bu çalışmada, plastik enjeksiyon makinasında, 1,5 mm kalınlığındaki alüminyum saclar, polistirenin farklı enjeksiyon basıncı, ergiyik sıcaklığı ve enjeksiyon hızı değerlerinde şekillendirilmiştir Bu parametrelerin sac metalin şekillendirilmesi üzerine etkileri, deneysel ölçüm metotların yanı sıra Taguchi, ANOVA, cevap yüzey metodu ve regresyon analizi teknikleri ile de incelenmiştir. Metalin şekillendirilebilirliği incelenirken, sac metalin şekillendirme sonrası incelme oranı, flanş bölgesindeki yarıçap değeri ve sertlik değerleri dikkate alınmıştır. Yapılan deneysel çalışmanın sonucunda, enjeksiyon basıncının şekillendirme üzerindeki en etkili parametre olduğu ve ikinci dereceden en etkili parametrenin ise ergiyik sıcaklığı olduğu görülmüştür. Şekillendirilen parçanın, merkezinden flanş bölgelerine doğru artan sertlik değeri sonuçları, sac metalin bu bölgelerde yüksek oranda şekillendirilebildiğini doğrulamıştır

A Novel Application in Sheet Metal Forming: Shaping Metals by Plastic Injection Molding based on Fluid Pressure Forming

Plastic injection molding, even though it is a manufacturing method for plastics, can be used for forming sheet metals based on fluid pressure forming. In this study, aluminum sheets with 1.5 mm thikcness were deformed under different injection pressure, melt temperature and injection rate on a plastic injection molding machine. The effects of these parameters on deformability of the sheet metal were investigated by experimental measurement techniques and Taguchi, ANOVA, regression, surface response methods. The thinning rate, radius along the flange and the hardness values were considered. As a result of the experimental study, it has been seen that injection pressure was the first degree effective parameter and melt temperature was the second degree effective parameter on thinning rate. The increment of hardness of the deformed part from center to the flange, verified the high deformability of the sheet metal in these regions

___

  • 1. Padmanabhan, R., Oliveria, M.C., Alves, J.L., Menezes, L.F., 2007. lnfluence of Process Parameters on the Deep Drawing of Stainless Steel, Finite Elements in Analysis and Design, 43, 1062-1067.
  • 2. Raju, S., Ganesan, G., Karthikeyan, R., 2010. lnfluence of Variables in Deep Drawing of AA 6061 sheet, Transactions of Nonferrous Metals Society of China, 20, 1856-1862.
  • 3. Lin, B.T., Yang, C.Y., 2017. Applying the Taguchi Method to Determine the Influences of Micro Ridge Punch Design on the Deep Drawing, Int J Adv Manuf Technol., 88, 2109-2111.
  • 4. Port, A.L., Toussaint, F., Arrieux, R., 2009. Finite Element Study and Sensitive Analysis of the Deep-drawing Formability of Commercially Pure Titanium, Int J Mater Form., 2, 121–129.
  • 5. Yagami, T., Manabe, K., Yamauchi, Y., 2007. Effect of Alternating Blank Holder Motion of Drawing and Wrinkle Elimination on Deep Drawability, J Mater Process Technol., 187–188, 187–191.
  • 6. Koç, M., Ağçayazı, A., Carsley, J., 2011. An Experimental Study on Robustness and Process Capability of the Warm Hydroforming Process, Journal of Manufacturing Science and Engineering, 133(02), 1-13.
  • 7. Yaşar, M., Kadı, İ., Evlen, H., 2011. AA 5754 Sacının Farklı Sıcaklıklarda Hidrolik Akışkanla Şekillendirilmesi. 6th lnternational Advanced Technologies Symposium (IATS’11), Elazığ, Turkey, 136-140.
  • 8. Li, B., Nye, T.J., Metzger, R., 2006. MultiObjective Optimization of Forming Parameters for Tube Hydroforming Process Based on the Taguchi Method, lnternational Journal Advanced Manufacturing Technologies, 28, 23-30.
  • 9. Michaeli, W., Maesing, R., 2010. lnjection Moulding and Metal Forming in One Process Step. 25th International Plastics Technology Colloquium of the Institute of Plastics Processing (IKV), RWTH Aachen University, Germany
  • 10. Lucchetta, G., Baesso, R., 2006. Polymer lnjection Forming (PIF) of Thin-Walled Sheet Metal Parts–Preliminary Experimental Results, 10th Esaform Conference on Material Forming, Zaragoza-Spain, 907, 1046-1051.
  • 11.Chen, M., Zhang, X., Lei, Q., Fu, J., 2002. Finite Element Analysis of Forming of Sheet Metal Blank in Manufacturing Metal/Polymer Macro-Composite Components via Injection Moulding, International Journal of Machine Tools & Manufacture, 42, 375–383.
  • 12. Altan, M., Bayraktar, M., Yavuz, B., 2016. Manufacturing Polymer/Metal Macro Composite Structure for Vibration Damping, lnternational Journal of Advanced Manufacturing Technologies, 86, 2119-2126.
  • 13. Tekkaya, A.E., Hussain, M.M., Witulski, J., 2012. The Non-Hydrostatic Responce of Polymer Melts as a Pressure Medium in Sheet Metal Forming, German Academic Society for Production Engineering (WGP), 6, 385-394.
  • 14.Bariani, P.F., Bruschi, S., Ghiotti, A., Lucchetta, G., 2007. An Approach to Modelling the Forming Process of Sheet MetalPolymer Composites, 56(1), 261-264.
  • 15.Behrens, B.A., Bouguecha, A., Götze, T., 2010. Consideration of Fundamental lnfluence Parameters for the Simulation of Sheet-Metal Forming Processes by Means of Plastic Melt Pressure, Materialwissenschaft und Werkstofftechnik, 41(10), 839-843.
  • 16. Landgrebe, D., Krausel, V., Rautenstrauch, A., Albert, A., Werteim, R., 2016. EnergyEfficiency in a Hybrid Process of Sheet Metal Forming and Polymer lnjection Moulding, Procedia CIRP, 40, 109-114.
  • 17. Parsa, M.H., Darbandi, P., 2008. Experimental and Numerical Analyses of Sheet Hydroforming Process for Production of an Automobile Body Part, Journal of Materials Processing Technology, 198, 381-390.
  • 18. Yuan, S.J., Han, C., Wang, X.S., 2006. Hydroforming of Automotive Structural Components with Rectangular-Sections, International Journal of Machine Tools & Manufacture, 46, 1201–1206.
  • 19.Ross, P.J., 1996. Taguchi Techniques for Quality Engineering (Second Edition), McGraw Hill, New York, USA, p. 327.
  • 20. Adeosun, S.O., Sekunowo, O.I., Balogun, S.A., Osoba, L.O., 2011. Effect of Deformation on the Mechanical and Electrical Properties of Aluminum-Magnesium Alloy, Journal of Minerals & Materials Characterization & Engineering, 10 (6), 553-560.
  • 21. Şen, M., Ekşi Altan, M., 2017 Plastik Enjeksiyon Kalıplama Yöntemi ile Sac Metallerin Şekillendirilmesinin İncelenmesi, Marmara Fen Bilimleri Dergisi, 1, 39-47.
  • 22. Abdulhaqq, A., Hamid, P., Ghosh, S., Jain, O., Subrata, R., 2005. Processing, Microstructure and Mechanical Properties of Cast in-situ Al (Mg, Mn)-Al2O3 (MnO2) Composites, Metallurgical and Materials Transactions A, 36A, 221-230.
  • 23. Nafsin, N., Rashed, H.M.M.A., 2013. Effects of Copper and Magnesium on Microstructure and Hardness of Al-Cu-Mg Alloys, International Journal of Engineering and Advanced Technology (IJEAT), 2(5), 533-536.
  • 24. Adeosun, S.O., Ayoola, W.A., Bodude, M., Sanni, S.O., 2011. Strength and Hardness of Directionally- Rolled AA1230 Aluminum Alloy, Journal of Emerging Trends in Engineering and Applied Sciences, 2(3), 440-444.