Reaktif Black 5 Boyar Maddesinin Aktif Karbon Üzerine Adsorpsiyonunun Kinetik ve Adsorpsiyon Modelleri Kullanılarak İncelenmesi

Bu çalışmada Reaktif Black 5 (RB5) boyar maddesinin granül aktif karbon (GAK) üzerine kesikli deneyler ile adsorpsiyonu çalışılmıştır. Adsorpsiyon sürecini açıklayabilmek için iki ve ikiden fazla parametreli olmak üzere toplam 17 farklı izoterm modeli kullanılmıştır. İki parametreli modeller arasında 0,99‟dan büyük regresyon katsayıları, heterojen yüzey adsorpsiyon süreçlerinin tanımlanmasında kullanılan Freundlich, Halsey ve Henderson izotermlerinden elde edilmiştir. Tüm adsorpsiyon izotermleri arasında en yüksek regresyon katsayısı (0,998) Fritz-Schlunder modelinden hesaplanmıştır. Langmuir izotermi GAK‟ın maksimum adsorpsiyon kapasitesini 23,58 mg/g olarak tahmin etmiştir. Adsorpsiyon kinetiğini en iyi açıklayan modelin yalancı ikinci derece kinetik eşitliği olduğu bulunmuştur. Adsorpsiyon kinetiği üzerine GAK dozunun etkili olduğu tespit edilmiştir.

Investigation of Adsorption of Reactive Black 5 Dye onto Activated Carbon by Using Kinetic and Adsorption Models

In this study the adsorption of Reactive Black 5 (RB5) dye onto granulated activated carbon (GAC) has been studied in batch experiments. 17 different adsorption isotherms which have two and more than two parameters have been used to explain the adsorption process. Greater than 0.99 regression coefficients were obtained from Freundlich, Halsey and Henderson isotherms, defining adsorption of heterogeneous surfaces, among two parameters models. The highest regression coefficient (0,998) was obtained from four parameters Fritz–Schlunder model among all adsorption isotherms. Langmuir isotherm predicted 23.58 mg/g maximum adsorption of GAC. The model that best describes the adsorption kinetics was found as the pseudo second order model. It was determined that GAC dosage was effective on adsorption kinetic.

___

  • 1. Senthilkumaar S, Kalaamani P, Porkodi K, Varadarajan PR, Subburaam CV. 2006. Adsorption of Dissolved Reactive Red Dye from Aqueous Phase onto Activated Carbon Prepared from Agricultural Waste. Bioresource Technology, 97/14: 1618-25.
  • 2. Ahmad MA, Alrozi R. 2011. Optimization of Rambutan Peel Based Activated Carbon Preparation Conditions for Remazol Brilliant Blue Removal. Chemical Engineering Journal, 168/1: 280-85.
  • 3. Ip AWM, Barford JP, McKay G. 2009. Reactive Black Dye Adsorption/Desorption onto Different Adsorbents: Effect of Salt, Surface Chemistry, Pore Size and Surface Area. Journal of Colloid and Interface Science, 337/1: 32-38.
  • 4. Walker GM, Weatherley LR. 1997. Adsorption of Acid Dyes onto Granular Activated Carbon in Fixed Beds, Water Research, 31/8; 2093- 101.
  • 5. Hameed BH, Mahmoud D.K, Ahmad A.L. 2008. Equilibrium Modeling and Kinetic Studies on the Adsorption of Basic Dye By a Low Cost Adsorbent: Coconut (Cocos Nucifera) Bunch Waste. Journal Hazardous Materials, 158/1: 65-72.
  • 6. Mittal A, Gupta VK, Malviya A., Mittal J2008. Process Development for the Batch and Bulk Removal and Recovery of a Hazardous, Water- Soluble Azo Dye Metanil Yellow by Adsorption Over Waste Materials (bottom ash and de-oiled soya). Journal Hazardous Materials, 151/2-3: 821-32.
  • 7. Allen S.J., Mckay G., Porter J.F., 2004. Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems. Journal of Colloid and Interface Science, 280( 2): 322 333.
  • 8. Hamdaoui O, Naffrechoux E. 2007. Modeling of Adsorption Isotherms of Phenol and Chlorophenols onto Granular Activated Carbon. Part II. Models with more than Two Parameters. J Hazard Mater. 147(1-2):401-11.
  • 9. Kinniburgh D. G., 1986. General Purpose Adsorption Isotherms, Environ. Sci. Technol., 20 (9), pp 895-904.
  • 10. Aksu, A., Sag, Y., Nourbakhsh, M., Kutsal. T., 1993. Atıksulardaki Bakır, Krom ve Kurşun İyonlarının Çeşitli Mikroorganizmalarla Adsorplanarak Giderilmesinin Karşılaştırmalı Olarak İncelenmesi, Turkish Journal Of Engineering & Environmental Sciences, 19: 285-293.
  • 11. Guptaa Susmita Sen, Krishna G. Bhattacharyya, 2011. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A review. Advances in Colloid and Interface Science. 162(1–2):39-58.
  • 12. Benefield, L. D., Judkins, J. F., Weand, B. L., 1982. Process Chemistry for Water and Wastewater Treatment. Prentice-Hall, Inc, Englewood Cliffs, New Jersey.
  • 13. Chiou, M.-S., Li, H.-Y., 2002. Equilibrium And Kinetic Modeling of Adsorption of Reactive Dye on Cross-Linked Chitosan Beads. Journal of Hazardous Materials, 93(2): 233-248.
  • 14. Farah J.F., 1 Nour Sh. El-Gendy. 2013. Performance, Kinetics and Equilibrium in Biosorption of Anionic Dye Acid Red 14 by the Waste Biomass of Saccharomyces cerevisiae as a Low-Cost Biosorbent. Turkish J Eng Env Sci. 37: 146-161.
  • 15. Onyango Ms, Kojima Y, Aoyi O, 2004. Bernardo Ec, Matsuda H., Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cationexchanged Zeolite F-9. J Colloid Interface Sci. 279: 341-350.
  • 16. Dabrowski A. 2001. Adsorption from Theory to Practice, Advances in Colloid and Interface Science, 93/1-3: 135-224.