Modelling Study on the Geotextile, Geogrid and Steel Strip Reinforced Slopes

Zeminin doğal koşullarının değişmesi, yüksek miktarda hafriyat gerektiren otoyol ve demiryolu kenarları veya destekli kazılardaki şev stabilitesi projelerinde beklenmedik gerilme artışlarına neden olmaktadır. Bu işlem sırasında farklı yükleme durumlarında bazı güvenlik sorunları oluşabilmektedir. Ek olarak, şev stabilitesi tasarımı ekonomik çözüm gerektirmektedir. Şev destek yapıları için bu önemli gereksinimler göz önünde bulundurularak en efektif tasarım yapılmalıdır. Bu çalışmada; kapsamlı bir literatür taramasının ardından, donatılı zemin yapısının ön kısmında yer alan derin kazılar dikkate alınarak şev stabilitesi problemi tüm yönleriyle incelenmiştir. Geotekstil (GT), geogrid (GG) ve çelik şerit (SS) donatılar, hem deney sürecinde hem de Plaxis yazılımı ile modelleme aşamasında şevin stabilite koşullarının arttırılması işleminde kullanılmıştır. Her donatı tipi zemin taşıma kapasitesi artışı sağlamış ve kendine has yer değiştirme davranışı göstermiştir. Dolayısıyla, sunulan değerlere göre taşıma kapasitesi ve yer değiştirme gereklilikleri doğrultusunda, tasarım işlemi ve sahadaki inşa sürecinde en efektif donatı elemanı seçilebilecektir

Geotekstil, Geogrid ve Çelik Şerit Donatılı Şevlerde Modelleme Çalışması

Changing the natural conditions of soil creates unexpected stress increments in slope stability projects, which are required high amount of soil excavation near the highways and railways or braced cut systems. Some safety problems can occur during this application under different loading cases. In addition, slope stability design requires economical solutions. Slope-supporting structures should be designed with most effective solution according to these signified requirements. A slope stability problem considering deep excavations in front of the reinforced soils are studied within this study in all its parts, after an extensive review of the literature. Geotextile (GT), geogrid (GG) and steel strip (SS) reinforcements are used to increase the stability conditions of slope during both experimental procedure and modelling process with Plaxis software. Each reinforcement type provided the bearing capacity enhancement and showed that unique displacement behavior. Therefore, most effective reinforcement member can be chosen in design procedure and construction phase in the site according to the bearing capacity and displacement requirements according to presented values

___

  • 1. Das, B.M., 1984. Principles of foundation engineering. Brooks/Cole Engineering Division, Monterey, California, 498.
  • 2. Vidal, H., 1966. La terre armée. Annales de L’Institute Technique du Batiment et des Travaux Publics., 223-224, 888-938.
  • 3. Bathurst, R. J., Simac, M. R., 1994. Geosynthetic Reinforced Segmental Retaining Wall Structures in North America, Keynote Lecture Reprint. Proceedings of the Fifth International Conference on Geotextiles, Geomembranes and Related Products, Singapore, 1-41.
  • 4. Miyata, Y., Bathurst, R.J., 2012. Measured and Predicted Loads in Steel Strip Reinforced c– Soil Walls in Japan. Soil Found., 52(1), 1-17.
  • 5. ASTM D4439–15a, 2015. Standard Terminology for Geosynthetics. ASTM International, West Conshohocken, PA, USA.
  • 6. Juran, I., Christopher, B., 1989. Laboratory Model Study on Geosynthetic Reinforced Soil Retaining Walls. J. Geotech. Engrg., ASCE, 115, (2), 905-926.
  • 7. DeMerchant, M.R., Valsangkar, A.J., Schriver, A.B., 2002. Plate Load Tests on Geogridreinforced Expanded Shale Lightweight Aggregate. Geotext. Geomembr., 20, 173-190.
  • 8. Yıldız, L., 2005. Bearing Capacity of Shallow Foundation on Geogrid-reinforced Slope. Master Dissertation, Cukurova University Institute of Natural and Applied Sciences, Adana.
  • 9. Bathurst, R.J., Nernheim, A., Allen, T.M., 2009. Predicted Loads in Steel Reinforced Soil Walls using the AASHTO Simplified Method. J. Geotech. Geoenviron. Eng., ASCE, 135(2), 177-184.
  • 10. Palmeira, E.M., 2009. Soil–geosynthetic Interaction: Modelling and Analysis. Geotext. Geomembr., 27, 368-390.
  • 11. Lin, Y.L., Li, X.X., Zhang, M.X., 2014. Effect of Reinforcement form on the Pullout Resistance of Reinforced Sand. Ground Improvement and Geosynthetics, ASCE, GSP238, 380-388.
  • 12.Indraratna, B., Nimbalkar, S., Rujikiatkamjorn, C., 2014. From Theory to Practice in Track Geomechanics-Australian Perspective for Synthetic Inclusions. Transp. Geotech., 1, 171- 187.
  • 13. Latha, G.M., Santhanakumar, P., 2015. Seismic Response of Reduced-scale Modular Block and Rigid Faced Reinforced Walls Through Shaking Table Tests. Geotext. Geomembr., 43, 307-316.
  • 14. Gonzalez-Torre, I., Calzada-Perez, M.A., Vega-Zamanillo, A., Castro-Fresno, D., 2015. Experimental Study of the Behaviour of Different Geosynthetics as Anti-reflective Cracking Systems using a Combined-load Fatigue Test. Geotext. Geomembr., 43, 345-350.
  • 15. Suzuki, M., Shimura, N., Fukumura, T., Yoneda, O., Tasaka, Y., 2015. Seismic Performance of Reinforced Soil Wall with Untreated and Cement-treated Soils as Backfill using a 1-g Shaking Table. Soil Found., 55(3), 626-636.
  • 16.Costa, C.M.L., Zornberg, J.G., Bueno, B.S., Costa, Y.D.J., 2016. Centrifuge Evaluation of the Time-dependent Behavior of Geotextilereinforced Soil Walls. Geotext. Geomembr., 44, 188-200.
  • 17.Balakrishnan, S., Viswanadham, B.V.S., 2016. Performance Evaluation of Geogrid Reinforced Soil Walls with Marginal Backfills Through Centrifuge Model Tests. Geotext. Geomembr., 44, 95-108.
  • 18. Xiao, C., Han, J., Zhang, Z., 2016. Experimental Study on Performance of Geosynthetic-reinforced Soil Model Walls on Rigid Foundations Subjected to Static Footing Loading. Geotext. Geomembr. 44, 81-94.
  • 19. Lal, D., Sankar, N., Chandrakaran, S., 2017. Effect of Reinforcement Form on the Behaviour of Coir Geotextile Reinforced Sand Beds. Soil Found., 57(2), 227-236.
  • 20. Al-Rkaby, A.H.J., Chegenizadeh, A., Nikraz, H.R., 2017. Anisotropic Strength of Large Scale Geogrid-reinforced Sand: Experimental Study. Soil Found., 57(4), 557-574.
  • 21.Richardson, G.N., 1995. Lessons Learned from the Failure of a Geotextile Reinforced Retaining Wall Facing. http://www.smithgardnerinc.com/docs/.
  • 22. Kim, Y-S., Won, M-S., 2006. Deformation Behaviors of Geosynthetic Reinforced Soil Walls on Shallow Weak Ground. Soil StressStrain Behavior: Measurement, Modeling and Analysis Geotechnical Symposium in Roma, Italy, 819-830.
  • 23. Stuedlein, A.W., Bailey, M., Lindquist, D. Sankey, J., Neely, W.J., 2010. Design and Performance of a 46-m-high MSE Wall. J. Geotech. Geoenviron. Eng., ASCE, 136(6), 786-796.
  • 24. Yonezawa, T., Yamazaki, T., Tateyama, M., Tatsuoka, F., 2014. Design and Construction of Geosynthetic-reinforced Soil Structures for Hokkaido High-speed Train Line. Transp. Geotech., 1, 3-20.
  • 25. Liu, S., Lu, Y., Weng, L., Bai, F., 2015. Field Study of Treatment for Expansive Soil/rock Channel Slope with Soilbags. Geotext. Geomembr., 43, 283-292.
  • 26.Jones, J.C.F.P., 1988. Earth Reinforcement and Soil Structures, Revised Reprint. Butterworth Advance Series in Geotechnical Engineering, Anchor Brendon Ltd, Tiptree, Essex.
  • 27. Yılmaz, H.R., Aklık, P., 2002. Geotekstil veya Geogrid Kullanılarak Oluşturulan Dayanma Yapılarında Sağlanabilen Ekonomi Hakkında Bir İnceleme. 9th National Conference of Soil Mechanics and Foundation Engineering, Eskisehir, 312-321.
  • 28. Allen, T.M., Bathurst, R.J., Holtz, R.D., Lee, W.F., Walters, D., 2004. New Method for Prediction of Loads in Steel Reinforced Soil Walls. J. Geotech. Geoenviron. Eng., ASCE, 130(11), 1109-1120.
  • 29. Hatami, K., Bathurst, R.J., 2006. Numerical Model for Reinforced Soil Segmental Walls Under Surcharge Loading. J. Geotech. Geoenviron. Eng., ASCE, 132(6), 673-684.
  • 30. Lin, Y.L., Li, X.X., Zhang, M.X., 2010. Limit Analysis of Reinforced Soil Slopes Based on Composite Reinforcement Mechanism. Ground Improvement and Geosynthetics, ASCE, GSP207, 59-64.
  • 31. Gu, J., 2011. Computational Modeling of Geogrid Reinforced Soil Foundation and Geogrid Reinforced Base in Flexible Pavement. Ph.D. Dissertation, Graduate Faculty of the Louisiana State University.
  • 32. Damians, I.P., Bathurst, R.J., Josa, A., Lloret, A., Albuquerque, P.J.R., 2013. Vertical-facing Loads in Steel-reinforced Soil Walls. J. Geotech. Geoenviron. Eng., ASCE, 139(9), 1419-1432.
  • 33. Yu, X., Pradhan, A., 2014. Study of Geogrid Reinforcement using Two Dimensional Discrete Element Method. Ground Improvement and Geosynthetics, ASCE, GSP238, 299-311.
  • 34. Hou, J., Zhang, M.X., Zhang, T.T., 2014. Comparison of Strip-reinforced with H-V Reinforced Foundation using FEM. Ground Improvement and Geosynthetics, ASCE, GSP238, 404-413.
  • 35. Yu, Y., Bathurst, R.J., Miyata, Y., 2015. Numerical Analysis of a Mechanically Stabilized Earth Wall Reinforced with Steel Strips. Soil Found., 55(3), 536-547.
  • 36.Carbone, L., Gourc, J.B., Carrubba, P., Pavanello, P., Moraci, N., 2015. Dry Friction Behaviour of a Geosynthetic Interface using Inclined Plane and Shaking Table Tests. Geotext. Geomembr., 43, 293-306.
  • 37. Allen, T.M., Bathurst, R.J., 2015. Improved Simplified Method for Prediction of Loads in Reinforced Soil Walls. J. Geotech. Geoenviron. Eng., ASCE, 141(11), 04015049-1-14.
  • 38. Liu, H., 2015. Reinforcement Load and Compression of Reinforced Soil Mass under Surcharge Loading. J. Geotech. Geoenviron. Eng., ASCE, 141(6), 04015017-1-10.
  • 39. Damians, I.P., Bathurst, R.J., Josa, A., Lloret, A., 2015. Numerical Analysis of an Instrumented Steel-reinforced Soil Wall. Int. J. Geomech., ASCE, 15(1), 04014037-1-15.
  • 40. Gao, Y., Yang, S., Zhang, F., Leshchinsky, B., 2016. Three-dimensional Reinforced Slopes: Evaluation of Required Reinforcement Strength and Embedment Length using Limit Analysis. Geotext. Geomembr., 44, 133-142.
  • 41. ASTM D6637/D6637M–15, 2015. Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multirib Tensile Method. ASTM International, West Conshohocken, PA, USA.
  • 42. ASTM D4533/D4533M–15, 2015. Standard test Method for Trapezoid Tearing Strength of Geotextiles. ASTM International, West Conshohocken, PA, USA.
  • 43. ASTM E8/E8M–15a, 2015. Standard test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken, PA, USA.
  • 44. FHWA-RD-89-04, 1990. Reinforced Soil Structures Volume I. Design and Construction Guidelines. U.S. Department of Transportation Federal Highway Administration, Virginia, United States.
  • 45. FHWA-HRT-14-094, 2015. Synthesis of Geosynthetic Reinforced Soil (GRS) Design Topics. U.S. Department of Transportation Federal Highway Administration, Virginia, United States.
  • 46. Sun, C., Graves, C., 2013. Mechanically Stabilized Earth (MSE) Walls Design Guidance. University of Kentucky Transportation Center.
  • 47. Miyata, Y., Bathurst, R.J., 2012. Reliability Analysis of Soil-geogrid Pullout Models in Japan. Soil Found., 52(4), 620-633.
  • 48. Wu, Y., Prakash, S., 1999. Effect of Submergence on Seismic Displacement of Rigid Walls. Second International Conference on Earthquake Geotechnical and Soil Dynamics, Lisbon, 277-289.
  • 49.JRA, 1996. Seismic Design Specifications and Construction of Highway Bridges. Japan Road Association.
  • 50. NGG, 2005. Nordic Guidelines for Reinforced Soils and Fills. Nordic Geosynthetic Group, www.sgf.net.
  • 51. PWRC, 2000. Design and Construction Manual of Geosynthetics Reinforced Soil, Revised Version. Public Works Research Center, Tsukuba, Japan.
  • 52. NCMA, 2009. Design Manual for Segmental Retaining Walls, 3 rd ed. National Concrete Masonry Association, Herndon, VA, USA.
  • 53. Özdemir, B., Evirgen, B., Tuncan, A., Onur, M.İ., Tuncan, M. 2015. Zemin Donatıları ile Güçlendirilmiş Şevlerin Değerlendirilmesi. 6. Geotechnical Symposium, Adana, 105.
  • 54. Onur, M.İ, Tuncan, M., Evirgen, B., Ozdemir, B., Tuncan, A., 2016. Behavior of Soil Reinforcements in Slopes. Procedia Engineering., 143, 483-489.