Microstrip Patch Antennas Covered with Chiral Metamaterial Structures

n this working we present gain characteristic of microstrip patch antennas covered with chiral metamaterial. In order to determine gain of antennas covered with chiral metamaterial structure, S11 parameters and radiation pattern of antennas with chiral metamaterial and without chiral metamaterial are plotted and compared each other. The simulation results show that antennas covered with chiral metamaterial structure increase either gain or radiation pattern or both at operation frequency.

Bakışımsız Metamalzeme Kaplı Mikroşerit Anten Yapıları

Bu çalışmada bakışımsız metamalzeme kaplı mikroşerit antenlerin kazanç karakteristiği ortaya koyulmuştur. Bakışımsız metamalzeme kaplı mikroşerit antenin kazancını belirlemek için, metamalzeme kaplı yüzeyin bakışımısız mtamalzemeli ve bakışımsız metamalzemesiz sonuçları grafiğe dökülmüş ve bunlar yorumlanarak birbiriyle karşılaştırılmıştır. Simulasyon sonuçları bakışımsız metamalzeme kaplı antenin kazancının ve yayılım patentinin arttığını ortaya göstermiştir.

___

Waterhouse, R., 2003. Micro Strip Patch Antennas, A Designer's Guide, Kluwer Academic Publishers, Boston, MA.

Jafargholi, A., Manouchehr K., 2012. Dipole Antenna Miniaturization Using Single-Cell Metamaterial, Applied Computational Electromagnetics Society Journal, 27, 3.

Palandoken, M., Grede, A., Henke, H., 2009. Broadband Microstrip Antenna with Left-handed Metamaterials, IEEE Transactions on Antennas and Propagation, 57(2), 331-338.

Veysi, M., Jafargholi, A., 2012. Directivity and Bandwidth Enhancement of Proximity-Coupled Microstrip Antenna using Metamaterial Cover, Applied Computational Electromagnetics Society Journal, 27, 11.

Burokur, S.N., Latrach, M., Toutain, S., 2005. Theoretical Investigation of a Circular Patch Antenna in the Presence of a Left-handed Medium, IEEE Antennas and Wireless Propagation Letters, 4:183-186.

Tao, L., Xiang-Yu, C., Yun, G., Qun Yang Wen‐Qiang, Li., 2011. Design of Miniaturized Broadband and High Gain Metamaterial Patch Antenna, Microwave and Optical Technology Letters, 53.12: 2858-2861.

Veselago, V.G., 1968. The Electrodynamics of Substances with Simultaneously Negative Values of and , Soviet Physics Uspekhi, 10(4), 509.

Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE Transactions on Microwave Theory and Techniques, 47.11: 2075-2084.

Shelby, R.A., Smith, D.R., Schultz, S., 2001. Experimental Verification of a Negative Index of Refraction, Science, 292(5514), 77-79.

Smith, D.R., Pendry, J.B., 2004. Wiltshire, Mike CK. Metamaterials and Negative Refractive Index, Science, 305(5685), 788-792.

Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Bakir, M., Sabah, C., 2015. Tunable Perfect Metamaterial Absorber Design Using the Golden Ratio and Energy Harvesting and Sensor Applications, Journal of Materials Science: Materials in Electronics, 26(12), 9735-9740.

Pendry, J.B., 2000. Negative Refraction Makes a Perfect Lens, Physical Review Letters, 85(18), 3966.

Garcia, N., Nieto, V.M., 2002. Left-handed Materials do not Make a Perfect Lens, Physical Review Letters, 88(20), 207403.

Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Demirel, E., Sabah, C., 2014. Perfect Metamaterial Absorber with Polarization and Incident Angle Independencies Based on Ring and Cross-wire Resonators for Shielding and a Sensor Application, Optics Communications, 322: 137-142.

Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Demirel, E., Sabah, C., 2014. Polarization and Angle Independent Perfect Metamaterial Absorber Based on Discontinuous Cross-wire-strips, Journal of Electromagnetic Waves and Applications, 28(6), 741-751.

Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2014. Design of Polarization- and Incident Angle-Independent Perfect Metamaterial Absorber with Interference Theory, Journal of Electronic Materials, 43, 11.

Dincer, F., Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2014. Polarization Angle Independent Perfect Metamaterial Absorbers for Solar Cell Applications in the Microwave, Infrared, and Visible Regime, Progress in Electromagnetics Research, 144, 93-101.

Cummer, S.A., Ioan Popa, B., Schurig, D., Smith, D.R., 2006. Full-wave Simulations of Electromagnetic Cloaking Structures, Physical Review E, 74(3), 036621.

Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M., 2007. Optical Cloaking with Metamaterials, Nature Photonics, 1(4), 224-227.

Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980.

Karaaslan, M., Bakır, M., 2014. Chiral Metamaterial Based Multifunctional Sensor Applications, Progress in Electromagnetics Research, 149, 55-67.

Abdouni, W., Tarot, A.C., Sharaiha, A., 2008. Realisation of a Compact Patch Antenna over an Artificial Magneto-dielectric Substrate, ACES 2008 the 24th Annual Review of Progress Applied Computational Electromagnetics.

Tang, M.C., Xiao, S., Wang, D., Xiong, J., Chen, K., Wang, B., 2011. Negative Index of Reflection in Planar Metamaterial Composed of Single Split-ring Resonators, Applied Computational Electromagnetics Society Journal 26(3), 250-258.

Fazi, C., Shi, S., Mirza, I., Prather, D., 2007. Split Ring Resonator Slab Modelling for a Metamaterial Loaded Loop Antenna, 23rd Annual Review of Progress in Applied Computational Electromagnetics (ACES), Verona, Italy, 117-122.

Liu, J.C., Shao, W., Wang, B.Z., 2011. A Dual-band Metamaterial Design Using Double SRR Structures, Applied Computational Electromagnetics Society Journal, 26(6), 459-463.

Szabo, Z., Park, G., Hedge, R., Er-Ping, Li., 2010. A Unique Extraction of Metamaterial Parameters Based on Kramer’s–Kronig Relationship, IEEE Transactions on Microwave Theory and Techniques 58(10), 2646-2653.

Hwang, R.B., Peng, S.T., 2003. Surface-wave Suppression of Resonance-type Periodic Structures, IEEE Transactions on Antennas and Propagation, 51(6), 1221-1229.

Lo, Y.T., Solomon, D., Richards, W., 1979. Theory and Experiment on Microstrip Antennas, IEEE Transactions on Antennas and Propagation 27(2), 137-145.

Colburn, J.S., Rahmat-Samii, Y., 1999. Patch Antennas on Externally Perforated High Dielectric Constant Substrates, IEEE Transactions on Antennas and Propagation 47(12), 1785-1794.

Ikonen, P., Maslovski, S., Tretyakov, S., 2005. PIFA Loaded with Artificial Magnetic Material: Practical Example for Two Utilization Strategies, Microwave and Optical Technology Letters 46(3) 205-209.

Yeap, S.B., Chen, Z.N., 2010. Microstrip Patch Antennas with Enhanced Gain by Partial Substrate Removal, IEEE Transactions on Antennas and Propagation 58(9), 2811-2816.

Mosallaei, H., Sarabandi, K., 2004. Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate, IEEE Transactions on Antennas and Propagation 52.9: 2403-2414.

Dincer, F., Karaaslan, M., Akgol, O., Unal, E., Sabah, C., 2015. Dynamic and Tuneable Chiral Metamaterials with Wideband Constant Chirality Over a Certain Frequency Band, Optik-International Journal for Light and Electron Optics, 126(24), 4808-4812.

Weir, W.B., 1974. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies, Proceedings of the IEEE, 62(1), 33-36.

Nicolson, A.M., Ross, G.F., 1970. Measurement of the Intrinsic Properties of Materials by Time-domain Techniques, IEEE Transactions on Instrumentation and Measurement, 19(4), 377-382.

Dincer, F., Karaaslan, M., Unal, E., Akgol, O., Sabah, C., 2014. Chiral Metamaterial Structures with Strong Optical Activity and Their Applications, Optical Engineering, 53(10), 107101-107101.