Kitosan Destekli Au Nanopartiküller ile Modifiye Edilmiş Alüminyum Elektrotta Hidrojen Gazı Üretimi

Günümüzün en büyük problemlerinden biri, enerji gereksiniminin karşılanmasında çok büyük oranda fosil yakıtların kullanılmasıdır. Artan enerji ihtiyacının fosil yakıtlardan sağlanması, çevresel problemlere ve enerji maliyetinin artmasına neden olmaktadır. Bu problemlerin çözümü ancak sürdürülebilir enerji kaynakları kullanımıyla gerçekleştirilebilecektir. Bu yüzden bol miktarda bulunan hidrojen, temiz ve ideal bir yakıt olarak geleceğin enerji kaynağı olarak düşünülmektedir. Hidrojen gazı üretiminin en basit yolu suyun elektrolizidir. Suyun elektrolizi ile hidrojen üretiminde karşılaşılan en büyük problem, elektrokimyasal sistemde oluşan aşırı gerilim nedeniyle maliyet artışıdır. Bu çalışmada suyun elektrolizi ile hidrojen elde etmek amacıyla ucuz bir materyal olarak seçilen alüminyum elektrodun yüzeyi, önce polianilin (PAni)-Kitosan kompozit yapısıyla modifiye edilmiş, daha sonra elde edilen bu kompozit yapı üzerine hidrojen oluşumunda yüksek katalitik aktivite gösteren altın (Au) nanopartiküller ayrıştırılmıştır. Elde edilen tüm yapıların yüzey özellikleri incelenmiş ve elektrokimyasal hidrojen üretimindeki katalitik aktiviteleri çeşitli elektrokimyasal yöntemler kullanılarak karşılaştırılmıştır

Hydrogen Gas Production on Aluminium Electrode Modified by Chitosan Supported with Au Nanoparticles

One of the major problems of today‟s world is in its heavy dependency on fossil fuels for energy requirements. The increase in energy requirements causes environmental problems and leads to an increase in energy costs. It has already been obvious that the solution to these problems is to use of sustainable energy resources. Since hydrogen, the most abundant element is the cleanest and ideal fuel, has been considered as the fuel of the future. The simplest way of hydrogen production is the electrolysis of water. The major problem in the electrolysis of water for the hydrogen evolution is the increase in costs due to overvoltage of the electrochemical system. In this study, first the surface of the aluminium electrode as a cheap material, coated with polyanilin (PAni)-Chitosan composite film, then the gold (Au) nanoparticles electrodeposited on this composite surface which show high catalytic activity toward hydrogen production. The surface properties of the all obtained structures are investigated and the catalytic activities of the structures are compared with various electrochemical techniques for the electrocatalytic hydrogen production

___

  • 1. Fujıshıma, A., Honda, K., 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238, 37-38.
  • 2. Devadas, B., Imae, T., 2016. Hydrogen Evolution Reaction Efficiency by Low Loading of Platinum Nanoparticles Protected By Dendrimers on Carbon Materials, Electrochemistry Communications, 72, 135-139.
  • 3. Tuomi, S., Guil-Lopez, R., Kallio, T., 2016. Molybdenum Carbide Nanoparticles as a Catalyst for the Hydrogen Evolution Reaction and the Effect of pH, Journal of Catalysis, 334, 102-109.
  • 4. Lu, Q., Hutchings, G. S., Yu, W., Zhou, Y., Forest, R. V., Tao, R., Rosen, J., Yonemoto, B. T., Cao, Z., Zheng, H., Xiao, J. Q., Jiao, F., Chen, J. G. 2015. Highly Porous Non-Precious Bimetallic Electrocatalysts for Efficient Hydrogen Evolution, Nature Communications, 6(6567), 1-8.
  • 5. Solmaz, R., Salcı, A., Yüksel, H., Doğrubaş, M., Kardaş, G., 2016. Preparation and Characterization of Pd-modified Raney-type NiZn Coatings and Their Application for Alkaline Water Electrolysis, International Journal of Hydrogen Energy, xxx, 1-12, doi:10.1016/j.ijhydene.2016.07.221.
  • 6. Akyüz, D., Keskin, B., Şahintürk, U., Koca, A., 2016. Electrocatalytic Hydrogen Evolution Reaction on Reduced Grapheneoxide Electrode Decorated with Cobaltphthalocyanine, Applied Catalysis B: Environmental 188, 217–226.
  • 7. Baran, E., Yazici, B., 2016. Effect of Different Nano-structured Ag Doped TiO2-NTs Fabricated by Electrodeposition on the Electrocatalytic Hydrogen Production, International Journal of Hydrogen Energy, 41(4), 2498-2511.
  • 8. Habibi, B., Pournaghi-Azar, M. H., Razmi, H., Abdolmohammad-Zadeh, H., 2008. Electrochemical Preparation of a Novel, Effective and Low Cast Catalytic Surface for Hydrogen Evolution Reaction, International Journal of Hydrogen Energy, 33, 2668-2678.
  • 9. Rao, C. R. K., Trivedi, D. C., 2005. Chemical and Electrochemical Depositions of Platinum Group Metals and their Applications, Coordination Chemistry Reviews, 249, 613– 631.
  • 10.Winther-Jensen, B., Fraser, K., Ong, C., Forsyth, M., MacFarlane, D. R., 2010. Conducting Polymer Composite Materials for Hydrogen Generation, Advanced Materials, 22, 1727-1730.
  • 11. Yan, R., Jin, B., 2014. Preparation and Electrochemical Performance of Polyaniline/Pt Microelectrodes, Electrochimica Acta, 115, 449- 453.
  • 12. Spătaru, T., Marcu, M., Banu, A., Roman, E., Spătaru, N., 2009. Electrodeposition of Platinum on Polytyramine-Modified Electrodes for Electrocatalytic Applications, Electrochimica Acta, 54, 3316–3319.
  • 13. Zhao, W., Zhou, X., Xue, Z., Wu, B., Liu, X., Lu, X., 2013. Electrodeposition of Platinum Nanoparticles on Polypyrrole Functionalized Graphene, Journal of Material Science, 48, 2566–2573.
  • 14. Del Valle, M. A., Díaz, F. R., Bodini, M. E., Pizarro, T., Córdova, R., Gómez, H., Schrebler, R., 1998. Polythiophene, Polyaniline and Polypyrrole Electrodes Modified by Electrodeposition of Ptand Pt+ Pb for Formic Acid Electrooxidation, Journal of Applied Electrochemistry, 28, 943-946.
  • 15.Wysocka-Żołopa, M., Grądzka, E., Szymański, K., Winkler, K., 2013. Electrodeposition of Nickel, Cobalt, and Iron on Polypyrrole Films, Thin Solid Films, 548, 44–51.
  • 16. Liu, Z., Zhang, L., Poyraz, S., Zhang, X., 2013. Conducting Polymer-Metal Nanocomposites Synthesis and their Sensory Applications, Current Organic Chemistry, 17, 2256-2267.
  • 17. Fujii, S., Kodama, M., Matsuzawa, S., Hamasaki, H., Ohtaka, A., Nakamura, Y., 2011. Conducting Polymer-Metal Nanocomposite Coating on Fibers, Advances in Nanocomposite Technology, Hashim, A. China: InTech.15.
  • 18. Mostafa, T. B., Darwish, A. S., 2014. An Approach Toward Construction of Tuned Chitosan/Polyaniline/Metal Hybrid Nanocomposites for Treatment of Meat Industry Wastewater, Chemical Engineering Journal, 243, 326–339.
  • 19. Adlim, M., Bakar, M. A., Liew, K. Y., Ismail, J., 2004. Synthesis of Chitosan-Stabilized Platinum and Palladium Nanoparticles and their Hydrogenation Activity, Journal of Molecular Catalysis A: Chemical, 212, 141–149.
  • 20. Luo, X. L., Xu, J. J., Zhang, Q., Yang, G. J., Chen, H. Y., 2005. Electrochemically Deposited Chitosan Hydrogel for Horseradish Peroxidase Immobilization Through Gold Nanoparticles Self-Assembly, Biosensors and Bioelectronics, 21, 190–196.
  • 21. Parmuzina, A. V., Kravchenko, O. V., 2008. Activation of Aluminium Metal to Evolve Hydrogen From Water,International Journal of Hydrogen Energy, 33, 3073-3076.
  • 22.Wang, H. Z., Leung, D. Y. C., Leung, M. K. H., Ni, M., 2009. A Review on Hydrogen Production using Aluminum and Aluminum Alloys, Renewable and Sustainable Energy Reviews, 13, 845-853.
  • 23. Silva, R. C., Sarmento, M. V., Nogueira, A. R. F, Tonholo, J., Mortimer, R. J., Faez, R., Ribeiro, A. S., 2014. Enhancing the Electrochromic Response of Polyaniline Films by the Preparation of Hybrid Materials Based on Polyaniline, Chitosan and Organically Modified Clay, RSC Advances, 4, 14948–14955.
  • 24. Varghese, J. G., Kittur, A. A., Rachipudi, P. S., Kariduraganavar, M. Y., 2010. Synthesis, Characterization and Pervaporation Performance of Chitosan-G-Polyaniline Membranes for The Dehydration of Isopropanol, Journal of Membran Science, 364, 111-121.
  • 25. Gök, A., Omastova, M., Yavuz, A. G., 2007. Synthesis and Characterization of Polythiophenes Prepared in the Presence of Surfactants, Synthetic Metals, 157, 23–29.
  • 26. Alhajri, N. S., Yoshida, H., Anjum, D. H., Garcia-Esparza, A. T., Kubota, J., Domen, K., Takanabe, K., 2013. Synthesis of Tantalum Carbide and Nitride Nanoparticles using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution, Journal of Materials Chemistry A, 1, 12606-12616.