İkiz Tabliyeler Arasındaki Akışın Dairesel Kesitli Çubuk ile Kontrol Edilmesi

Bu çalışmada, uzun açıklıklı ikiz tabliyeler arasındaki akışın dairesel kesitli çubuk ile kontrol edilmesi hedeflenmiştir. İki tabliye arasındaki mesafenin tabliye yüksekliğine oranı L/H=1,7 ve dairesel kesitli çubuğun çapı 4 mm seçilmiştir. Deneyler Reynolds sayısının Re=23440 değerinde PIV tekniği kullanılarak gerçekleştirilmiştir. Dairesel kesitli çubuk iki tabliye arasında yatay yönde beş farklı ve dikey yönde üç farklı olmak üzere toplam on beş farklı noktada konumlandırılmıştır. PIV ölçüm sonuçları, dairesel kesitli çubuğun konumlandırıldığı yere bağlı olarak tabliyeler arasındaki ters akış bölgelerini önemli ölçüde etkilediğini ortaya koymuştur. Ayrıca, dairesel kesitli çubuğun iki tabliye arasındaki alt ve üst kayma tabakalarının etkileşimini azalttığı gözlemlenmiştir. Kontrol elamanın bulunmadığı durum için elde edilen Reynolds kayma gerilmesinin maksimum değeri, dairesel kesitli çubuğun tabliyeler arasında x/D=12,5 ve y/D=0’da konumlandırıldığında durum ile kıyaslandığında %49 oranında azalmıştır.

Flow Control in the Gap of Twin Box Girders by Circular Rod

In this study, it was aim to flow control in the gap where between twin box girder by rod. The gap ratio of twin box girders and diameter of rod were selected as L/H=1.7 and 4 mm. Experiments were performed using PIV technique at Re=23440. The rod was located in the gap of twin box girders at fifteen different position (five different horizontal direction and three different vertical direction). The results of PIV measurements exhibited that the rod affected significantly reverse flow regions depends on the location. Also, the rod reduced interaction of shear layers on the upper and lower side in the gap. The peak maximum of Reynolds shear stress was decreased by 49% at x/D=12.5 and y/D=0 compared to without rod case.

___

  • Larsen, A., Walther, J.H., 1998. Discrete Vortex Simulation of Flow Around Five Generic Bridge Deck Sections, Journal of Wind Engineering and Industrial Aerodynamics, 96, 934-944.
  • Bruno, L., Khris, S., 2003. The Validity of 2D Numerical Simulations of Vortical Structures Around a Bridge Deck, Mathematical and Computer Modelling, 37, 795-828.
  • Frandsen, J.B., 2004. Numerical Bridge Deck Studies Using Finite Elements. Part I: Flutter, Journal of Fluids and Structures, 19, 171-191.
  • Sarkar, P.P., Caracoglia, L., Haan Jr, F.L., Sato, H., Murakoshi, J., 2009. Comparative and Sensitivity Study of Flutter Derivatives of Selected Bridge Deck Sections, Part 1: Analysis of Inter-laboratory Experimental Data, Engineering Structures, 31, 158-169.
  • Kwon, S.D., Sungmoon Jung, M.S., Chang, S.P., 2000. A New Passive Aerodynamic Control Method for Bridge Flutter, Journal of Wind Engineering and Industrial Aerodynamics, 86, 187-202.
  • El-Gammal, M., Hangan, H., King, P., 2007. Control of Vortex Shedding-induced Effects in a Sectional Bridge Model by Spanwise Perturbation Method, Journal of Wind Engineering and Industrial Aerodynamics, 95, 663-678.
  • Zhang, H., Xin, D., Ou, J., 2016. Wake Control of Vortex Shedding Based on Spanwise Suction of a Bridge Section Model Using Delayed Detached Eddy Simulation, Journal of Wind Engineering and Industrial Aerodynamics, 155, 100-114.
  • Zhang, L.Q., Chen, G.B., Chen, W.L., Gao, D.L., 2017 Separation Control on a Bridge Box Girder Using a Bypass Passive Jet Flow, Applied Sciences (Switzerland), 7, 1-19.
  • Kwok, K.C.S., Qin, X.R., Fok, C.H., Hitchcock, P.A., 2012. Wind-induced Pressures Around a Sectional Twin-deck Bridge Model: Effects of Gap-width on the Aerodynamic Forces and Vortex Shedding Mechanisms, Journal of Wind Engineering and Industrial Aerodynamics, 110, 50-61.
  • Chen, W.L., Li, H., Hu, H., 2014. An Experimental Study on the Unsteady Vortices and Turbulent Flow Structures Around Twin- box-girder Bridge Deck Models with Different Gap Ratios, Journal of Wind Engineering and Industrial Aerodynamics, 132, 27-36.
  • Laima, S., Li, H., 2015. Effects of Gap Width on Flow Motions Around Twin-box Girders and Vortex-induced Vibrations, Journal of Wind Engineering and Industrial Aerodynamics, 139, 37-49.
  • Laima, S., Jiang, C., Li, H., Chen, W., Ou, J., 2018. A Numerical Investigation of Reynolds Number Sensitivity of Flow Characteristics Around a Twin-box Girder, Journal of Wind Engineering and Industrial Aerodynamics, 172, 298-316.
  • Battista, R.C., Pfeil, M.S., 2000. Reduction of Vortex-induced Oscillations of Rio-niteroi Bridge by Dynamic Control Devices, Journal of Wind Engineering and Industrial Aerodynamics, 84, 273-288.
  • Larsen, A., Savage, M., Lafrenière, A., Hui, M.C.H., Larsen, S., 2008. Investigation of Vortex Response of a Twin Box Bridge Section at High and Low Reynolds Numbers, Journal of Wind Engineering and Industrial Aerodynamics, 96, 934-944.
  • Laima, S., Li, H., Chen, W., Li, F., 2013. Investigation and Control of Vortex-Induced Vibration of Twin Box Girders, Journal of Fluids and Structures, 39, 205-221.
  • Ma, C.M., Wang, J.X., Li, Q.S., Qin, H., Liao, H.L., 2018. Vortex-Induced Vibration Performance and Suppression Mechanism for a Long Suspension Bridge with Wide Twin-Box Girder, Journal of Structural Engineering (United States), 144, 1-14.
  • Laima, S., Li, H., Chen, W., Ou, J., 2018. Effects of Attachments on Aerodynamic Characteristics and Vortex-induced Vibration of Twin-box Girder, Journal of Fluids and Structures, 77, 115-133.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ