İntegral Köprülerde Hareketli Yükler Altında Üstyapı Özelliklerinin Kazık Kuvvetlerine Etkisi

Bu çalışmada, integral köprülerin kazıklarında oluşan kuvvetlere hareketli yüklerin etkisi, çeşitli üstyapı parametrelerinin değişimleriyle birlikte incelenmiştir. Bu amaçla, birçok üç boyutlu integral köprünün sonlu elemanlar modelleri kurulmuştur. Bu modellerin analizleri AASHTO LRFD hareketli yükleri altında yapılmıştır. Hareketli yükler en kritik etkileri bulabilmek için köprüler üzerinde enine ve boyuna yönde farklı konumlara yerleştirilmişlerdir. Analizlerde köprü uzunluğu, kiriş boyutu ve aralığı, kiriş adedi, tabliye kalınlığı ve konsol uzunluğu gibi çeşitli üstyapı parametreleri ele alınmıştır. Sonlu elemanlar analizleri sonucunda farklı parametrelere bağlı kazık kuvvetleri elde edilmiştir. Analizler sonucunda, kiriş tipi ve tabliye kalınlığı dışındaki parametrelerinin kazık kuvvetlerini önemli ölçüde etkiledikleri gözlenmiştir. Ayrıca, ele alınan birçok köprüde yükleme durumlarına bağlı olarak bazı kazıklarda çekme kuvveti oluşmuştur

Effects of Superstructure Properties on Pile Forces in Straight Integral Bridges under Live Load

In this study, the effects of truck loads on pile forces for straight integral bridges is investigated together with the variations in superstructure parameters. For this purpose, finite element models of numerous three-dimensional integral bridges are built and the analyses are conducted under AASHTO LRFD live loads. Truck loads are located in various longitudinal and transverse positions on the bridge in order to get the most critical loading. In the analyses, the superstructure parameters such as bridge length, girder type, girder spacing, number of girders, slab thickness and cantilever length are considered and the pile forces for all these bridges are obtained. The analyses results reveal that all the superstructure parameters except girder type and slab length have significant effect on pile forces. Additionally, in almost all bridges, for some load cases tension forces in piles are observed

Kaynakça

1. Burke, M.P. Jr., 2009. Integral and Semi-Integral Bridges, John Wiley and Sons, West Sussex, UK

2. Franchin, P., Pinto, P.E., 2014. Performancebased Seismic Design of Integral Abutment Bridges, Bulletin of Earthquake Engineering, 12, 939-60.

3. Erhan, S., Dicleli, M., 2015. Comparative Assessment of the Seismic Performance of Integral and Conventional Bridges with Respect to the Differences at the Abutments, Bulletin of Earthquake Engineering, 13, 653-77.

4. White, H., Pétursson, H., Collin, P., 2010. Integral Abutment Bridges: the European Way, Practice Periodical on Structural Design and Construction, 15, 201-8.

5. David, T.K., Forth, J.P., Ye, J., 2014. Superstructure Behavior of a Stub-Type Integral Abutment Bridge, Journal of Bridge Engineering, 19, 04014012.

6. Feldmann, M., Pak, D., Hechler, O., Martin, P.O., 2011. A Methodology for Modelling the Integral Abutment Behaviour of NonSymmetrically Loaded Bridges, Structural Engineering International, 21, 311-9.

7. AASHTO LRFD Bridge Design Specifications. 2014, 6th ed. Washington DC.

8. Yousif, Z., Hindi, R., 2007. AASHTO-LRFD Live Load Distribution for Beam-and-slab Bridges: Limitations and Applicability, Journal of Bridge Engineering, 12, 765-73.

9. Imbsen, R.A., Nutt, R.V., 1978. Load Distribution Study on Highway Bridges using STRUDL Finite Element Analysis Capabilities, Proceedings of Conference on Computing in Civil Engineering, ASCE, New York.

10. Hays, C.O., Sessions, L.M., Berry, A.J., 1986. Further Studies on Lateral Load Distribution using a Finite Element Method, Transportation Research Record, Vol. 1072, pp. 6-14.

11. Zokaie, T., 2000. AASHTO-LRFD Live Load Distribution Specifications, Journal of Bridge Engineering, Vol. 5, pp. 131-138.

12. Tarhini, K.M., Frederick, R.G., 1992. Wheel Load Distribution in I-girder Highway Bridges, Journal of Structural Engineering, Vol. 118, pp. 1285-95.

13. Mabsout, M.E., Tarhini, K.M., Frederick, G.R., Tayar, C., 1997. Finite Element Analysis of Steel Girder Highway Bridges, Journal of Bridge Engineering, 2, 83-7.

14. Dicleli, M., Albhaisi, S.M., 2003. Maximum Length of Integral Abutment Bridges Supported on Steel h-piles Driven in Sand, Engineering Structures, 25, 1491-504.

15.Brooke Q.H., Civjan A.S., 2016. Parametric Study on Effects of Pile Orientation in Integral Abutment Bridges, Journal of Bridge Engineering, 04016132.

16. Husain, I., Bagnariol, D., 1996. Integral-abutment Bridges, Ontario Ministry of Transportation Report SO-96-01, St. Catharines, Ontario, Canada.

17. Mourad, S., Tabsh, W.S., 1998. Pile Forces in Integral Abutment Bridges Subjected to Truck Loads, Transportation Research Record: Journal of the Transportation Research Board 1633, 77-83.

18. Dicleli, M., Erhan, S., 2008. Effect of Soil and Substructure Properties on Live Load Distribution in Integral Abutment Bridges, Journal of Bridge Engineering, 13, 527-39.

19. Dicleli, M., Erhan, S., 2009. Live Load Distribution Formulae for Single Span Prestressed Concrete Integral Abutment Bridge Girders, Journal of Bridge Engineering, 14, 472-486.

20. Erhan, S., Dicleli, M., 2009. Live Load Distribution Equations for Integral Bridge Substructures, Engineering Structures, 31, 1250-64.

21. Yalcin, O.F., Dicleli, M., 2013. Comparative Study on the Effect of Number of Girders on Live Load Distribution in Integral Abutment and Simply Supported Bridge Girders, Advances in Structural Engineering, 16, 1011-34.

22. Dicleli, M., Yalcin, O.F., 2014. Critical Truck Loading Pattern to Maximize Live Load Effects in Skewed Integral Bridges, Structural Engineering International, 2, 265-74.

23. Yalcin, O. F., 2017. A Comparative Study of Live Load Distribution in SKEWED Integral and Simply Supported Bridges, KSCE Journal of Civil Engineering, 1-13.

24. SAP2000, 2014. Integrated Finite Element Analysis and Design of Structures. Berkeley (CA): Computers and Structures Inc.

25.Brockenbrough, R.L., 1986. Distribution Factors for Curved I-girder Bridges. Journal of Structural Engineering, 112, pp. 2200-15.

26.Cook, R.D., 1995. Finite Element Modeling for Stress Analysis, New York, John Wiley & Sons.

Kaynak Göster