Geçirimli Betonların Basınç Dayanımı Üzerine Deneysel Bir Çalışma

Tükenen kaynakları koruma ve doğa üzerindeki insan etkisini azaltma çabası sonucunda son yıllarda geçirimli betonlar popülerlik kazanmıştır. Özellikle yer altı su kaynaklarını beslemesi, kirleticiler ve ısı adası etkisini azaltması geçirimli betonların avantajları arasında sayılabilir. Sınırlı dayanım özelliklerinden dolayı, bugüne kadar geleneksel betonlar kadar kullanılmamışlardır. Ancak, katkı malzemeleri teknolojisindeki gelişim ve artan çevre bilinciyle birlikte geçirimli betonların adı eskiden olmadığı kadar fazla duyulmaktadır. Bu çalışmada geçirimli betonların fiziksel özelliklerini etkileyen önemli parametrelerden gradasyonun basınç dayanımına etkisi incelenmiştir. Çalışmanın sonucunda kum eklenmesinin basınç dayanımını ciddi oranda arttırabileceği görülmüştür. Ancak, ön deneyler yapılarak kum eklenmesi eşik değerinin belirlenmesi gerekmektedir.

An Experimental Study on Compressive Strength of Pervious Concretes

Pervious concretes have gained popularity in recent years, because of human effort to protect depleted resource and reduce effect on nature. Especially resupply ground water resource, reduce effect of pollutants and urban heat island can be regarded as advantages of pervious concretes. Since limited strength properties of pervious concrete, it has not used as much as conventional concrete up to now. However, with development in additive agents technology and rising in environmental consciousness pervious concrete's name has been heard more frequently than ever before. In this study aggregate gradation, which affects physical properties of pervious concrete, was investigated. At the end of the study, it was seen that addition of sand could increase substantially compressive strength. However, preliminary test should be carried out to determine the threshold of sand addition level.

___

  • Yang, J., Jiang, G., 2002. Experimental Study on Properties of Pervious Concrete Pavement Materials, Cement and Concrete Research, 33(3): 381-386.
  • Barrett, M.E., Jr, L.B.I., Jr, J.F.M., Charbeneau, R.J., 1998. Characterization of Highway Runoff in Austin, Texas, Area, Journal of Environmental Engineering, 124(2): 131-137.
  • Haselbach, L.M., Valavala, S., Montes, F., 2005. Permeability Predictions for Sand- Clogged Portland Cement Pervious Concrete Pavement Systems, Journal of Environmental Management, 81(1): 42-49.
  • Ghafoori, N., Dutta, S., 1995. Laboratory Investigation of Compacted No-Fines Concrete for Paving Materials. Journal of Materials in Civil Engineering, 7(3): 183-191.
  • Tennis, P.D., Leming, M.L., Akers, D.J., Association N.R.M.C., 2004. Pervious Concrete Pavements, Portland Cement Association Skokie, IL.
  • Urban Heat Island, Wikipedia, https://en.wikipedia.org/wiki/Urban_heat_islan d, 27.05.2016, 17:56.
  • Nguyen, D.H., Sebaibi, N., Boutouil, M., Leleyter, L., Baraud, F., 2014. A Modified Method for the Design of Pervious Concrete Mix, Construction and Building Materials, 73: 271-282.
  • Chandrappa, A.K. Biligiri, K.P., 2016. Pervious Concrete as a Sustainable Pavement Material-Research Findings and Future Prospects: A State-of-the-Art Review, Construction and Building Materials, 111: 262- 274.
  • American Concrete Institute, 522R-10, Report on Pervious Concrete.
  • National Ready Mix Concrete Association (NRMCA), NRMCA-Concrete in Practice-38 (CIP-38), http://www.nrmca.org/aboutconcrete /cips/38p.pdf, 26.05.2016, 16:30.
  • Kevern, J.T., Wang, K., Schaefer, V.R., 2010. Effect of Coarse Aggregate on the Freeze- Thaw Durability of Pervious Concrete. Journal of Materials in Civil Engineering, 22(5): 469-475.
  • Jain, A.K., Chouhan, J.S., 2011. Effect of Shape of Aggregate on Compressive Strength and Permeability Properties of Pervious Concrete, International Journal of Advanced Engineering Research and Studies EISSN2249-8974, 1(1): 120-126.
  • ?osi?, K., Korat, L., Ducman, V., Netinger, I., 2015. Influence of Aggregate Type and Size on Properties of Pervious Concrete, Construction and Building Materials, 78: 69-76.
  • Fu, T.C., Yeih, W., Chang, J.J., Huang, R., 2014. The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete. Advances in Materials Science and Engineering, p:17.
  • Shu, X., Huang, B., Wu, H., Dong, Q. Burdette, E.G., 2011. Performance Comparison of Laboratory and Field Produced Pervious Concrete Mixtures. Construction and Building Materials, 25: 3187-3192.
  • Chen, Y., Wang, K., Wang, X., Zhou, W., 2013. Strength, Fracture and Fatigue of Pervious Concrete, Construction and Building Materials, 42: 97-104.
  • Zhong, R., Wille, K., 2015. Material Design and Characterization of High Performance Pervious Concrete, Construction and Building Materials, 98: 51-60.
  • Rehder, B., Banh, K., Neithalath, N., 2014. Fracture Behavior of Pervious Concretes: The Effects of Pore Structure and Fibers, Engineering Fracture Mechanics, 118: 1-16.
  • Dong, Q., Wu, H., Huang, B., Shu, X., Wang, K., 2012. Investigation into Laboratory Abrasion Test Methods for Pervious Concrete, Journal of Materials in Civil Engineering, 25(7): 886-892.
  • Gaedicke, C., Marines, A., Miankodila, F., 2014. Assessing the Abrasion Resistance of Cores in Virgin and Recycled Aggregate Pervious Concrete, Construction and Building Materials, 68: 701-708.
  • Gesoğlu, M., Güneyisi, E., Khoshnaw, G., İpek, S., 2014. Abrasion and Freezing- Thawing Resistance of Pervious Concretes Containing Waste Rubbers, Construction and Building Materials, 73: 19-24.
  • ASTM International, ASTM C 666/C666M-03, ASTM Standard Test Method of Resistance of Concrete to Rapid Freezing and Thawing, 2003.
  • Qin, Y., Yang, H., Deng, Z., He, J., 2015. Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods. Advances in Materials Science and Engineering, Hindawi Publishing Corporation, 1-6.
  • Putman, B.J., Neptune, A.I., 2011. Comparison of Test Specimen Preparation Techniques for Pervious Concrete Pavements, Construction and Building Materials, 25: 3480-3485.