Fenolün Sulu Çözeltiden Düşük Maliyetli bir Nano Kompozit ile Giderimi

Bu çalışmada, Eucalyptus camaldulensis kabuğu/maghemit (ECMC) kompoziti sulu çözeltiden fenol gideriminde düşük maliyetli bir adsorbent olarak kullanılmıştır. ECMC’nin yapısal karakterizasyonu, morfolojisi ve elementel analizleri taramalı elektron mikroskopisi (SEM), enerji dağılımlı X-ışını (EDX) ve X-ışını k ırınımı difraktometresi (XRD) ile gerçekleştirilmiştir. Adsorpsiyon süreci üzerine temas zamanı, pH, sıcaklık ve başlangıç fenol konsantrasyonu gibi çeşitli parametrelerin etkisi araştırılmıştır. Yapılan çalışmalar ECMC’nin adsorpsiyon kapasitesinin fenol konsantrasyonunun artmasıyla arttığını göstermiştir. ECMC tarafından fenol gideriminde optimum pH’ın 5 olduğu bulunmuştur. 500 mg/L fenol için adsorpsiyon kapasitesi; 1 gram ECMC dozu ile pH 5’de ve 20 °C’de 90,92 mg/g olarak bulunmuştur. Langmuir izotermi adsorpsiyon sürecini 0,998 korelasyon katsayısı ile mükemmel bir şekilde tanımlamıştır.

Removal of Phenol from Aqueous Solution by a Low-Cost Nano Composite

In the present study, Eucalyptus camaldulensis bark/maghemite composite (ECMC) was used as a lowcost adsorbent for the removal of phenol from aqueous solution. The structural characterization, morphology and elemental analysis of ECMC were performed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The effects of various independent parameters such as contact time, initial phenol concentration, temperature, pH on adsorption process were investigated. It was found that the adsorption capacity of ECMC increases with the increasing of phenol concentration. The optimum pH was found to be 5 for the removal of phenol by ECMC. The adsorption capacity for 500 mg/L phenol was found to be 90.92 mg/g with 1 g ECMC at pH 5 and 20 ⁰C. Langmuir isotherm model described perfectly the adsorption process with 0.998 correlation coefficient.

___

  • Busca, G., Berardinelli, S., Resini, C., Arrighi, L., 2008. Technologies for the Removal of Phenol from Fluid Streams: a Short Review of Recent Developments, J. Hazard. Mater., 160, 265-288.
  • Moussavi, G., Mahmoudi, M., Barikbin, B., 2009. Biological Removal of Phenol from Strong Wastewaters Using a Novel MSBR. Water Res., 43, 1295-1302.
  • Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., Mofarrah, E., 2014. Phenol Removal from Industrial Wastewaters: A Short Review, Desalin. Water Treat., 1–20
  • Mostafa, M.R., Sarma, S.E. and Yousef, A.M., 1998. Removal of Organic Pollutants from Aqueous Solution: Part 1. Adsorption of Phenols by Activated Carbon, Idian Journal of Chem., 28A, 946-948.
  • Ahalya, N., Ramachandra, T.V., Kanamadi, R.D., 2003. Biosorption of Heavy Metals, Res. J. Chem. Environ., 7, 71–78
  • Tamer, M.A., Ismail, A., Mohd, A.A., Ahmad, A.F., 2013. Cadmium Removal from Aqueous Solution Using Microwaved Olive Stone Activated Carbon, J. Environ. Chem. Eng., 1(5), 89-99.
  • Kang, H., Kim, D., 1998. Transformation of Nanoparticle Magnetite Prepared in Homogeneous Aqueous Solution, Bull. Korean Chem. Soc., 19, 408-410.
  • Nethaji, S., Sivasamy, A., Mandal, A.B., 2013. Preparation and Characterization of Corn Cob Activated Carbon Coated with Nano-Sized Magnetite Particles for the Removal of Cr(VI), Bioresource Technology, 134, 94-100.
  • Shokrollahi, H., Janghorban, K., 2007. Influence of Additives on the Magnetic Properties, Microstructure and Densification of Mn–Zn Soft Ferrites, Mater. Sci. Eng.: B, 141, 91-107.
  • Aksu, A., Sag, Y., Nourbakhsh, M., Kutsal. T., 1993. Atıksulardaki Bakır, Krom ve Kurşun İyonlarının Çeşitli Mikroorganizmalarla Adsorplanarak Giderilmesinin Karşılaştırmalı Olarak İncelenmesi, Turkish Journal of Engineering & Environmental Sciences, 19, 285-29.
  • Guptaa, S.S., Krishna, G.B, 2011. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A Review, Advances in Colloid and Interface Science, 162(1-2), 39–5.
  • Behzad, H., Susana, R.C., Mohammad, A.A., Mohammad, A., Inderjee, T.T., Shilpi, A., Vinod, K.G., 2015. Kinetics and Thermodynamics of Enhanced Adsorption of the Dye AR 18 using Activated Carbons Prepared from Walnut and Poplar Woods, J. Mol. Liq., 208, 99-105.
  • Dabrowski, A., Podkos´cielny, P., Hubicki, Z., Barczak, M., 2005. Adsorption of Phenolic Compounds by Activated Carbon - a Critical Review, A. Chemosphere, 58, 1049-1070
  • Allen, S.J., Mckay, G., Porter, J.F., 2004. Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems, Journal of Colloid and Interface Science, 280(2), 322-333.
  • Benefield, L.D., Judkins, J.F., Weand, B.L., 1982. Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, Inc, Englewood Cliffs, New Jersey.
  • Chiou, M.S., Li, H.Y., 2002. Equilibrium and Kinetic Modeling of Adsorption of Reactive Dye on Cross-Linked Chitosan Beads, Journal of Hazardous Materials, 93(2), 233-248.
  • José, A.G.A., Juana, D.S.J., Maribel, LB., Manuel, S.C., Jenaro, L.V.C., 2017. Synthesis and Characterization of AN/EGDMA-Based Adsorbents for Phenol Adsorption, Reactive and Functional Polymers, 117, 112–119
  • Changmai, M., Purkait, M.K., 2017. Kinetics, Equilibrium and Thermodynamic Study of Phenol Adsorption using NiFe2O4 Nanoparticles Aggregated on PAC, Journal of Water Process Engineering, 16, 90–97.
  • Joana, M., Telma, M., Artur, J.M.V., António, P., Margarida, J.Q., Licínio, G.L., 2017. Adsorption of Phenol on Silica Aerogels using a Stirred Tank and a Fixed Bed Column, Ciência & Tecnologia dos Materiais, 29, 229-233.
  • Rama, R.K., Sahub, J.N., Jayakumar, N.S., 2017. Optimal Isotherm Parameters for Phenol Adsorption from Aqueous Solutions onto Coconut Shell Based Activated Carbon: Error Analysis of Linear and Non-linear Methods, Journal of the Taiwan Institute of Chemical Engineers, 80, 472-487.
  • Idil, I., Nalan, K., Mithat, Y., 2017. Separation of Bisphenol A and Phenol from Water by Polymer Adsorbents: Equilibrium and Kinetics Studies, Journal of Water Process Engineering, 16, 206-211.
  • Wen, P.C., Wei, G., Xinyu, C., Jing, H., Rui, F. L., 2016. Phenol Adsorption Equilibrium and Kinetics on Zeolite X/Activated Carbon Composite, Journal of the Taiwan Institute of Chemical Engineers, 62, 192-198.
  • Mohammad, H.D., Masoome, M., Mahmood, A., Gordon, M., Kaan, Y., Ahmad, B.A., Behzad, H., Mohammad, A., Mubarak, N.M, Sahu, J.N., 2016. High-performance Removal of Toxic Phenol by Single-Walled and Multi-Walled Carbon Nanotubes: Kinetics, Adsorption, Mechanism and Optimization Studies, Journal of Industrial and Engineering Chemistry, 35, 63-74.
  • Babak, K., Mahsa, J., Mohammad, R., Amirhosein, R, Ali, A.B., 2016. Development of Response Surface Methodology for Optimization of Phenol and P-chlorophenol adsorption on Magnetic Recoverable Carbon, Microporous and Mesoporous Materials, 231, 192-206.
  • Roxana, I., Marcela, S., Cornelia, P., Cosmin, L., 2016. Single and Simultaneous Adsorption of Methyl Orange and Phenol onto Magnetic Iron Oxide/Carbon Nanocomposites, Arabian Journal of Chemistry, 535, 1-17.
  • Liliana, G., Juan, C.M., 2014. Study of Adsorption of Phenol on Activated Carbons Obtained from Eggshells. Journal of Analytical and Applied Pyrolysis, 106, 41-47.
  • Nour, T.A., Ghadir, A.E., Farag, S.H., 2015. Individual and Competitive Adsorption of Phenol and Nickel onto Multiwalled Carbon Nanotubes, Journal of Advanced Research, 6(3), 405-415.
  • Hank, D., Azi, Z., Ait, H.S., Chaalal, O., Hellal, A., 2014. Optimization of Phenol Adsorption onto Bentonite by Factorial Design Methodology, Journal of Industrial and Engineering Chemistry, 25, 2256-2263.
  • Rushdi, I.Y., Bassam, E., Ala’a, H.A., 2011. Adsorption Characteristics of Natural Zeolites as Solid Adsorbents for Phenol Removal from Aqueous Solutions: Kinetics, Mechanism, and Thermodynamics Studies, Chemical Engineering Journal, 171, 1143-1149.
  • Lorenc-Grabowska, E., Gryglewicz, G., Diez, M.A., 2014. Kinetics and Equilibrium Study of Phenol Adsorption on Nitrogen-enriched Activated Carbons, Fuel, 114, 235-243.