Elektronik Sistemlerin Soğutulmasında Nanoakışkanlar ve Çarpan Jetlerin Müşterek Etkisinin İncelenmesi

Bu çalışmada; gelişen teknolojilere bağlı olarak artan elektronik elemanların ısıl yük problemini çözmek maksadıyla, yüksek ısı akılı bir yüzeyden olan ısı transferinin, nanoakışkanların çarpan akışkan jet tekniği ile kullanılarak iyileştirilmesi sayısal olarak incelenmiştir. Farklı hacim oranları, farklı ısı akıları ve farklı tipte hazırlanan nanoakışkanların ısı transferine etkisi çalışmada kullanılan parametrelerdir. Çalışmada PHONEICS HAD programının düşük Reynolds sayılı k-ε türbülans modeli kullanılmıştır. Sonuç olarak, hacimsel oran %2’den %8’e artırıldığında ortalama Nusselt sayısında %15,2 oranında bir iyileşme tespit edilmiştir. Yüzeydeki ısı akısı iki kat artırıldığında, yüzey sıcaklıklarının arttığı ancak yerel Nusselt sayısında belirgin bir değişiklik olmadığı tespit edilmiştir. Cu-H2O nanoakışkanı kullanılması durumunda, ortalama Nusselt sayısında sırasıyla CuO-H2O, TiO2-H2O, Al2O3-H2O ve saf suya göre %2,6, %5,5, %6,1, %9,6 iyileşme olduğu gözlemlenmiştir. Sayısal modelde kullanılan düşük Reynolds sayılı k-ε türbülans modelinin sıcaklık dağılımını ve akış özelliklerini iyi bir şekilde temsil edebildiği görülmüştür.

Investigation of Combined Effect of Nanofluids and Impinging Jets on Cooling of Electronic Systems

At this study, to solve the problem of high heat loads of electronic systems, enhancement of heat transfer from a high heat flux surface with nanofluids and impinging jet technique was investigated numerically. Effect of different volume ratios, different heat fluxes and different nanofluids and pure water on heat transfer are the parameters of this study. Low Reynolds k-ε turbulence model of PHONEICS CFD code was used at this study. As a result, it was obtained that increasing volume ratio from 2% to 8% causes an increase of 15.2% on average Nusselt number. Increasing heat flux on the surface two times causes an increase on surface temperature but does not cause any significant increase on local Nusselt number. Using Cu-H2O nanofluid causes an increase of %2.6, %5.5, %6.1 and % 9.6 on average Nusselt number with respect to CuO-H2O, TiO2-H2O, Al2O3-H2O and pure water. It was seen that the low Reynolds number k-ε turbulence model well represent the temperature distribution and flow properties in this study.

___

  • Abdulvahitoğlu, A., Aydın K., 2012. Performance and Exhaust Emission Characteristics of a CI Engine Fueled with Synthesized Fuel Blends, Energy Education Science and Technology Part A: Energy Science and Research, 2, 699-710.
  • Teamah, M.A., Dawood, M.M., Shehata, A., 2015. Numerical and Experimental Investigation of Flow Structure and Behavior of Nanofluids Flow Impingement on Horizontal Flat Plate, Experimental Thermal and Fluid Science, 74, 235-246.
  • Manca, O., Ricci, D., Nardini, S., Lorenzo, G., 2016. Thermal and Fluid Dynamics Behaviours of Confined Laminar Impinging Slot Jets with Nanofluids, International Communications in Heat and Mass Transfer, 70, 15-26.
  • Qu, J., Wu, H.Y. Cheng, P., 2010. Thermal Performance of an Oscillating Heat Pipe with Al2O3-Water Nanofluids, International Communication Heat and Mass Transfer, 37, 111-115.
  • Lv, J., Chang, S., Hu, C., Bai, M., Wang, P., Zeng, Ke., 2017. Experimental Investigation of Free Single Jet Impingement using Al2O3-water Nanofluid, International Communication in Heat and Mass Transfer, 88, 126-135.
  • Khaleduzzaman, S.S., Sohel, M.R., Saidur, R., Mahbubul, I.M., Akash, B.A., Selvaraj, J., 2014. Energy and Exergy Analysis of Alümina-water Nanofluid for an Electronic Liquid Cooling System, International Communication in Heat and Mass Transfer, 57, 118-127.
  • Shang, F.M., Liu, D.Y., Xian, H.Z., Yang, Y.P. Du, X.Z. 2007. Flow and Heat Transfer Characteristics of Different Forms of Nanaometer Particles in Oscillating Heat Pipe, Journal of Chemical Industry, 58, 2200-2204.
  • Wang, P., Lv, P., Bai, M., Wang, Y., Hu, C., 2014. A Numerical Investigation of Impinging Jet Cooling with Nanofluids, Nanoscale and Micrescale Thermophysical Engineering, 18, 329-353.
  • Sun, B., Qu, Y., Yang, D., 2016. Heat Transfer of Single Impinging Jet with Cu Nanofluids, Applied Thermal Engineering, 102, 701-707.
  • Umer, A., Naveed, S., Ramzan, N., 2015. Experimental Study of Laminar Forced Convection Heat Transfer of Deionized Water Based Copper (I) Oxide Nanaofluids in Tube with Constant Wall Heat Flux, Heat Mass Transfer, 52, 2015-2025.
  • Kang, S.W., Wei, W.C., Tsia, S.H., Yang S.H., 2006. Experimental Investigation of Silver Nanofluid on Heat Pipe Thermal Performance, Applied Thermal Engineering, 26, 2377-2382.
  • Lv, J., Hu, C., Bai, M., Zeng, K., Chang, S., Gao, D., 2017. Experimental Investigation of Free Single Impingement using SiO2-water nanofluid, Experimental Thermal and Fluid Science, 84, 39-46.
  • Singh, M., Yadav, D., Arpit S., Mitra S., Saha, S.K., 2016. Effect of Nanofluid Concentration and Composition on Laminer Jet Impinged Cooling of Heated Steel Plate, Applied Thermal Engineering, 100, 237-246.
  • Kilic, M., Ozcan, O., 2017. Numerical Investigation of Heat Transfer and Fluid Flow of Nanofluids with Impinging jets, International Conference On Advances and Innovations in Engineering (ICAIE), 434-440.
  • Nayak, S.K., Mishra, P.C., Parashar, S.K., 2016. Enhancement of Heat Transfer by Water –Al2O3 and Water-TiO2 Nanofluids Jet Impingement in Cooling Hot Surface Steel Surface, Journal of Experimental Nanoscience, 11, 1253-1273.
  • Yan, W.M., Liu, H.C., Soong, C.Y., Yang, W.J., 2005. Experimental Study of Impinging Heat Transfer Along Rib-roughened Walls by using Transient Liquid Crystal Technique, Heat and Mass Transfer, 48, 2420-2428.
  • Kilic, M., Çalışır, T., Başkaya, Ş., 2017. Experimental and Numerical Study of Heat Transfer from a Heated Flat Plate in a Rectangular Channel with an Impinging Jet, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(1), 329-344.
  • McGuinn, A., Persoons, T., O’donovan, T., Murray, D., 2007. Surface Heat Transfer from an Impinging Synthetic Air Jet, International Journal of Heat and Mass Transfer, 20, 1333-1338.
  • Isman, M.K., Pulat, E., Etemoglu, A.B., Can, M., 2008. Numerical Investigation of Turbulent Impinging Jet Cooling of a Constant Heat Flux Surface, Numerical Heat Transfer, 53(10), 1109-1132.
  • Kilic, M., Baskaya Ş., 2017. Improvement of Heat Transfer from High Heat Flux Surfaces by using Vortex Promoters with Different Geometries and Impinging Jets, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 693-707.
  • Corcione, M., 2011. Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids, Energy Conversion and Management, 52(1), 789–793.
  • Li, Q., Xuan, Y., Yu, F., 2012. Experimental Investigation of Submerged Single Jet Impingement using Cu-water Nanofluid, Applied Thermal Engineering, 36(1), 426–433.