Çukurova Üniversitesi’nde Ölçülen Güneş Işınım Verileri Analizi

Adana, güneş enerjisi nedeniyle çok uygun bir bölgede (Boy=35 o 18 'E, Enl = 36 o 59' N, Yük=130 m) yer almaktadır. Bölgede yapılması düşünülen yatırımlar için atmosferik koşulların her zaman sabit olmaması nedeniyle güneş enerjisi ve meteorolojik ölçümlerin düzenli olarak yapılmasına ihtiyaç duyulmaktadır. Bu çalışmada, Çukurova Üniversitesi Uzay Bilimleri ve Güneş Enerjisi Uygulama ve Araştırma Merkez’inde (UZAYMER) piranometre ile alınan anlık veriler FORTRAN 77 program diliyle hazırlanan programla analiz edilmiştir. Bu programla, saniyelik olarak alınan verilerden saatlik ve günlük veri setleri oluşturulmuştur. Bu veri setlerinden aylık, yıllık ve yüzdelik ışınım değerleri hesaplanmıştır. Atmosfer dışı ışınım enerjisi değerleri kullanılarak, günlük verilerden Adana’nın bulutsuzluk değerleri elde edilmiştir. Çalışma iki kısımdan oluşmuştur. Birinci kısım 1978-1982 yılları arasında alınan verilerin, ikincisi ise karşılaştırma yapılmak amacıyla 2017 yılında alınan verilerin analizidir. 1978-1982 yılları arasında Adana’da yıllık ortalama güneş enerjisi değeri 5745,1 MJ/m 2 ve ortalama günlük toplam ışınım 15,74 MJ/m 2 -gün olarak belirlenmiştir. En az enerji Ocak ayında 6,84 MJ/m 2 -gün, en fazla güneş enerjisi ise 25,42 MJ/m 2 -gün ile Haziran ayında olduğu tespit edilmiştir. 2017’de alınan verilerin sonucunda ise yıllık ortalama günlük güneş enerjisi 17,75 MJ/m 2 -gün, yıllık ortalama güneş enerjisi ise 6479,99 MJ/m 2 olarak hesaplanmıştır. En fazla güneş enerjisi 29,25 MJ/m 2 -gün ile Temmuz, en az ise 6,24 MJ/m 2 -gün aralık ayı olarak belirlenmiştir. Ayrıca çalışmada, 1978-1982 ve 2017 verilerinden, bulutsuzluk indeksi de belirlenerek karşılaştırılmıştır. Bu sonuca göre K t 0,64 değeri için ise havanın açık olduğu kabul edilmiştir. 1978-1982 dönemi için en bulutlu ay Şubat en açık ay ise Eylül olarak belirlenmiştir. 2017 verilerine göre de en bulutlu ay Şubat, en açık ay ise Temmuz ve ekim olarak belirlenmiştir. Yapılacak yatırımlar için bu değerlerin yol gösterici niteliğinde olduğu ortaya konulmuştur.

Analysis of Solar Radiation Data Measured at Cukurova University

Adana is located in a very suitable area due to solar energy (Long=35 o 18 'E, Lat=36 o 59' N, Alt=130 m). Due to the fact that the atmospheric conditions are not always constant for the investments to be made in the region, there is a need for regular measurements of solar energy and meteorological measurements. In this study, instant data obtained with pyranometer in Cukurova University Space Sciences and Solar Energy Application and Research Center (UZAYMER) were analyzed with the program prepared with FORTRAN 77 program language. Hourly and daily data sets are created from data taken in seconds. Monthly, yearly and percentile radiation values are calculated from these data sets. With the non- atmospheric radiation energy values, the clearness values of Adana were obtained from the daily data. The study consisted of two parts. The first part is the analysis of the data taken between 1978-1982 and the second is the analysis of the data taken in 2017 for comparison. Between the years of 1978-1982 in Adana, the average annual solar energy value was 5745,1 MJ/m 2 and the average daily total radiation was 15.74 MJ/m 2 -day. The minimum energy is 6.84 MJ/m 2 -day in January and the maximum solar energy is 25.42 MJ /m 2 -day in June. As a result of the data obtained in 2017, the average annual solar energy is 17.75 MJ/m 2 -day and the annual average solar energy is 6479.99 MJ/m 2 . Maximum solar energy is 29.25 MJ/m 2 -day with July and at least 6.24 MJ/m 2 -day in December. In addition, in the study, the statistics of 1978-1982 and 2017 were determined and compared. According to this result, for the value of K t 0.64 value for the air is assumed to be open. The most cloudy month for the period 1978-1982 is February and the most open month is September. According to 2017 data, the most cloudy month is February and the clearest month is July and October. These values are guiding for the investments to be made.

___

  • McDaniels, D.K., 1979. The Sun: Our Future Energy Source (Second Edition). New York: John Wiley and Sons, 271.
  • Anderson, B., 1977. Solar Energy, Fundamentals in Building Design, McGraw- Hill, New York, 150.
  • Deriş, N., 1979. Güneş Enerjisi Sıcak Su ile Isıtma Tekniği, Sermet Matbaası, İstanbul, 100.
  • Ögelman H.B., 1981. Yatay Yüzeye Düşen Toplam Güneş Radyasyonun Türkiye’de Dağılımı, Güneş Dergisi, 2, 20-24.
  • Mengeş, H.O., Sonmete, M.H., 2005. Konya’da Aylık Ortalama Toplam Güneş Işınımının Tahmini için Mevcut Bazı Modellerin Karşılaştırılması, Tarım Makinaları Bilimi Dergisi, 1(3), 237-244.
  • Bulut, H., Büyükalaca, O., 2007. Simple Model for the Generation of Daily Global Solar- Radiation Data in Turkey, Applied Energy, 84, 477–491.
  • Varınca, K.B., Gönüllü M.T., 2006. Türkiye’de Güneş Enerjisi Potansiyeli ve Bu Potansiyelin Kullanım Derecesi, Yöntemi ve Yaygınlığı Üzerine Bir Araştırma, I. Ulusal Güneş ve Hidrojen Enerjisi Kongresi, Haziran 2006, ESOGÜ, Eskişehir, 21-23.
  • Bakirci, K., 2008. Correlations for Estimation of Solar Radiation on Horizontal Surfaces. Journal of Energy Engineering. 134(3),130-134.
  • Şahan, M., Şahan, H., Yeğingil, İ., 2010. Yıllık Toplam ve Ultraviole (UV) Güneş Enerjisi Verilerinin Ölçülmesi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(1), 1016.
  • Çağlar, A., Yamalı, C., Baker D., K., Kaftanoğlu B., 2013. Measurement of Solar Radiation in Ankara, Turkey. J. of Thermal Science And Technology, 33(2), 135-142.
  • Şahan, M., Tokat, Ö., Okur, Y., 2015. Osmaniye’de Günlük Toplam Güneş Işınım Ölçümleri, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi, SDU Journal of Science (E-Journal), 10(2), 97-105.
  • Arslan, G., Bayhan, B., 2016. Solar Energy Potential in Mersin and A Simple Model to Predict Daily Solar Radiation, Muğla Journal of Science and Technology, Special Issue, 1-4.
  • Özcan, A., 2016. New Experiences on Environmental Rights in Frame Work Of Sustainability and An Ecopolitical Analysis: Solar and Wind Rights, Alternative Policy 8(1), 34-66.
  • Duffie, J.A, Beckman, W.A., 2013. Solar Engineering of Thermal Processes, Fourth Edition, John Wiley & Sons, Inc. 3-133.
  • McDaniels, D.K., 1979. The Sun: Our Future Energy Source (Second Edition). New York: John Wiley and Sons. 271.
  • Thekaekara, M.P., Drummond, A.J., 1971. Standard Values for the Solar Constant and its Spectral Components. Natl. Phys. Sci., 229, 6-9.
  • Thekaekara, M.P., 1976. Solar Radiation Measurement: Techniques and Instrumentation, Solar Energy, 18(4), 309-325.
  • Threlkeld, J.L., Jordan, R.C., 1957. Direct Solar Radiation Available on Clear Days. Heat, Piping Air Cond, 64(29), 12-18.
  • Benford, F., Bock, J.E., 1939. A Time Analysis of Sunshine, Trans. Am. Illumin. Eng. Soc., 34, 200-218.
  • Esen, R., 1980. Bir Siyah-beyaz Piranometre Tasarımı Gerçekleştirmesi ve Özelliklerinin Belirlenmesi. Ç.Ü.T.B.F Tez (yayınlanmamış), 54.
  • AI Kudish, D., Machlav, W.Y., 1983. Solar Radiation Data for Beer Sheva, Israel-Solar Energy, 33-37.