Atık Pil Tozu Liç Kalıntısındaki Manganın Çözünürlüğü için Optimum Koşulların Yanıt Yüzey Yöntemiyle Belirlenmesi

Bu çalışmada, bitmiş çinko karbon ve alkali pillerden hazırlanan atık pil tozundaki çinko oksidin nitrik asit çözeltisinde çözündürülerek giderilmesinden sonra geriye kalan liç kalıntısındaki manganın çözünürlüğü için optimum parametre değerleri belirlenmiştir. Sülfürik asit derişimi, reaksiyon sıcaklığı ve reaksiyon süresi bağımsız değişkenler olarak seçilmiş ve çözünürlüğe etki eden parametre değerlerini optimize etmek için yanıt yüzey yöntemi (RSM) kullanılmıştır. Mangan çözünürlüğünü arttırmak için indirgen madde olarak melas kullanılmıştır. Proses parametrelerinin etkilerini görebilmek için deneysel bulgulara çoklu regresyon analizi yapılmış ve modifiye bir denklem elde edilmiştir. Deneyler sonucunda sülfürik asit derişimi, reaksiyon sıcaklığı ve reaksiyon sürenin artmasıyla liç veriminin arttığı belirlenmiştir. Reaksiyon sıcaklığı ve reaksiyon sürenin çözünme üzerinde daha etkili parametreler olduğu gözlenmiştir. Maksimum liç verimine ulaşmak için optimum deney koşulları 2,07 mol/L, 68,8 °C ve 120 dk olarak bulunmuştur. Optimum koşullar altında mangan çözünürlüğünün %93 olduğu belirlenmiştir.

Determination of Optimal Conditions for Dissolution of Manganese in the Leach Residue of Waste Battery Powder by Response Surface Method

In this work, the optimal parameter values for the dissolution of manganese in the leach residue were determined after zinc oxide in the waste battery powder prepared from spent zinc carbon and alkaline batteries was removed by dissolving in nitric acid solution. The concentration of sulfuric acid, reaction temperature and reaction time were selected as independent variables, and response surface method (RSM) was used to optimize the parameter values that have an effect on the dissolution. Molasses was utilized as reducing agent to increase the dissolution of manganese. To see the interactive effects of process variables, the multiple regression analysis to the experimental findings was performed, and a modified equation was obtained. At the end of the experiments, it was determined that the leaching efficiency increased with an increase in the concentration of sulfuric acid, reaction temperature and reaction time. It was observed that the reaction temperature and reaction time were more effective parameters on the dissolution. To reach the maximum leaching efficiency, the optimum experimental conditions were found to be 2.07 mol/L, 68.8 °C and 120 min. It was determined that 93% of manganese in the solid residue was dissolved under optimal conditions.

___

  • Veloso, L.R.S., Rodrigues, L.E.O.C., Ferreira, D.A, Magalhaes F.S., Mansur, M.B., 2005. Development of a Hydrometallurgical Route for the Recovery of Zinc and Manganese from Spent Alkaline Batteries, J. Power Sources, 152, 295-302.
  • Bernades, A.M., Espinosa, D.C.R., Tenorio, J.A.S., 2004. Recycling of Batteries: A Review of Current Processes and Technologies, J. Power Sources, 130, 291-298.
  • Xionga, S., Lia, X., Liua, P., Haoa, S., Haoa, F., Yinb, Z., Liua, J., 2018. Recovery of Manganese from Low Grade Pyrolusite Ore by Reductively Acid Leaching Process Using Lignin as a Low Cost Reductant, Miner. Eng., 125, 126-132.
  • Yamaguchi, T., Nagano, H., Murai, R., Sugimori, H., Sekiguchi, C., Sumi, I., 2018. Development of Mn Recovery Process from Waste Dry Cell Batteries, J. Mater. Cycles Waste Manag., 20, 1909-1917.
  • Salgado, A.L., Veloso, A.M.O, Pereira, D.D., Gontijo, G.S., Salum, A., Mansur, M.B., 2003. Recovery of Zinc and Manganese from Spent Alkaline Batteries by Liquid–Liquid Extraction with Cyanex 272, J. Power Sources, 115, 367-373.
  • Biswas, R.K., Karmakar, A.K., Kumar, S.L., 2016. Recovery of Maganese and Zinc from Spent Zn-C Cell Powder: Experimental Design of Leaching by Sulfuric Acid Solutions Containing Glucose, Waste Manage., 51, 174-183.
  • De Souza, C.C.B.M., De Oliveria, D.C., Tenorio, J.A.S., 2001. Characterization of Used Alkaline Batteries Powder and Analysis of Zinc Recovery by Acid Leaching, J. Power Sources, 103, 120-126.
  • Ferella, F., Michelis, I.D., Pagnanelli, F., Beolchini, F., Furlani, G., Navarra, M., Veglio, F., Toro, L., 2006. Recovery of Zinc and Manganese from Spent Batteries by Different Leaching Systems, Acta Metall. Slovaca, 12, 95-104.
  • Gega, J., Walkowiak, W., 2011. Leaching of Zinc and Manganese from Used up Zinc- Carbon Batteries Using Aqueous Sulfuric Acid Solution, Physicochem. Prob. Miner. Process., 46, 155-162.
  • Turhan Özdemir, G.D., Demirkıran, N., 2016. Atık Alkali Pillerden Elde Edilen Çinko Tozun Sodyum Hidroksit Çözeltilerindeki Çözünürlüğünün İncelenmesi, AKU J. Sci. Eng., 16, 61-67.
  • Demirkıran, N., Turhan Özdemir, G.D., 2019. A Kinetic Model for Dissolution of Zinc Oxide Powder Obtained from Waste Alkaline Batteries in Sodium Hydroxide Solutions, Metall. Mater. Trans. B, 50B, 491-501.
  • Baba, A.A., Adekola, A.F., Bale, R.B., 2009. Development of a Combined Pyro-and Hydro- Metallurgical Route to Treat Spent Zinc- Carbon Batteries, J. Hazard. Mater., 171, 838-844.
  • Senanayake, G., Shin, S.M., Senaputra, A., Winn, A., Pugaev, D., Avraamides, J., Sohn, J.S., Kim, D.J., 2010. Comparative Leaching of Spent Zinc-Manganese-Carbon Batteries Using Sulfur Dioxide in Ammoniacal and Sulfuric Acid Solution, Hydrometallurgy, 105, 36-41.
  • Shin, S.M., Senanayake, G., Sohn, J., Kang, J., Yang, D., Kim, T., 2009. Separation of Zinc from Spent Zinc-Carbon Batteries by Selective Leaching with Sodium Hydroxide, Hydrometallurgy, 96, 349-353.
  • Demirkıran, N., 2015. Examination of the Use of Ammonium Acetate as Lixiviant in Recovery of Zinc from Waste Batteries and Kinetic Analysis, Environ. Eng. Manag J., 14, 51-56.
  • Karakaya, E., Kükrer, T., Veglio, F., Akçıl, A.U., Kitis, M., 2007. Atık Alkali ve Çinko- Karbon Pillerden Mangan ve Çinko Geri Kazanımı: İnorganik ve Organik Asitlerle Liç Testleri, 7. Ulusal Çevre Mühendisliği Kongresi, İzmir, Turkiye, 24-27 Ekim, 301-305.
  • Sayılgan, E., Kükrer, T., Yigit, N.O., Civelekoglu, G., Kitis, M., 2010. Acidic Leaching and Precipitation of Zinc and Manganese from Spent Battery Powder Using Various Reductants, J. Hazard. Mater., 173, 137-143.
  • Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., 2008. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry, Talanta, 76, 965-977.
  • Azizi, D., Shafaei, S.Z., Noaparast, M., Abdollahi, H., 2012. Modeling and Optimization of Low-grade Mn Bearing Ore Leaching Using Response Surface Methodology and Central Composite Rotatable Design, Trans. Nonferr. Met. Soc. China, 22, 2295-2305.
  • Tanong, K., Coudert, L., Blais, J.F., 2016. Recovery of Metals from a Mixture of Various Spent Batteries by a Hydrometallurgical Process, J. Environ. Manag., 181, 95-107.
  • Turan M.D., Altundoğan H.S., 2011. Hidrometalurjik Araştırmalarda Yanıt Yüzey Yöntemlerinin (YYY) Kullanımı, Madencilik, 50, 11-23.
  • Montgomery, D.C., 2001. Design and Analysis of Experiments, 5 th Edition, Wiley, New York.
  • Ijadi Bajestani, M., Mousavi, S.M., Shojaosadati, S.A., 2014. Bioleaching of Heavy Metals from Spent Household Batteries using Acidithiobacillus Ferrooxidans: Statistical Evaluation and Optimization, Sep. Purif. Technol., 136, 309-316.
  • Tanong, K., Coudert, L., Chartier, M., Mercier, G., Blais, J.F., 2017. Study of the Factors Influencing the Metals Solubilisation from a Mixture of Waste Batteries by Response Surface Methodology, Environ. Technol., 38, 3167-3179.
  • Shalchian, H., Rafsanjani-Abbasi, A., Vahdati- Khaki, J., Babakhani, A., 2015. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning, Metall. Mater. Trans. B, 46B, 38-47.
  • Derikvandi, H., Nezamzadeh-Ejhieh, A., 2017. Comprehensive Study on Enhanced Photocatalytic Activity of Heterojunction ZnS- NiS/Zeolite Nanoparticles: Experimental Design Based on Response Surface Methodology (RSM), Impedance Spectroscopy and GC-MASS Studies, J. Colloid Interf. Sci., 492, 652-664.
  • Yolmeh, M. Jafari, S.M., 2017. Applications of Response Surface Methodology in the Food Industry Processes, Food Bioprocess. Tech., 10, 413-433.
  • Arulkumar, M., Sathishkumar, P., Palvannan, T. 2011. Optimization of Orange G Dye Adsorption by Activated Carbon of Thespesia Populnea Pods Using Response Surface Methodology, J. Hazard. Mater., 186, 822-834.
  • Turhan Özdemir, G.D., Demirkıran, N., 2018. Selective Dissolution of Zinc and Manganese from Waste Alkaline Battery Powders by Two- Stage Leaching Method, International Conference on Innovative Engineering Applications, Sivas, Turkey, 20-22 Sept. 300-306.
  • Sadeghi, S.M., Vanpeteghem, G., Neto, I.F.F., Soares, H.M.V.M., 2017. Selective Leaching of Zn from Spent Alkaline Batteries Using Environmentally Friendly Approaches, Waste Manage., 60, 696-705.
  • Lashenn, T.A., El-Hazek, M.N., Helal, A.S., El-Nagar, W., 2009. Recovery of Manganese Using Molasses as Reductant in Nitric Acid Solution, Int. J. Miner. Process., 92, 109-114.
  • Xu, W., Liang, L., Zhu, M. 2015. Determination of Sugars in Molasses by HPLC Following Solid-Phase Extraction, Int. J. Food Prop., 18, 547-557.
  • Nayl, A.A., Ismail, I.M., Aly, H.F., 2011. Recovery of Pure MnSO 4 .H 2 O by Reductive Leaching of Manganese from Pyrolusite Ore by Sulfuric Acid and Hydrogen Peroxide, Int. J. Miner. Process., 100, 116-123.