Araç Parçalarının MEMS Manyetometre Sensör Çıktısına Etkisi Murat BAKIRCI

Birçok Akıllı Ulaşım Sistemi (AUS) için araçların yön bilgisinin hassasiyeti oldukça önemlidir. GPStabanlı konumlandırma ve yön tahmini neredeyse bütün ulaşım sistemlerinde yaygın olarakkullanılmaktadır. Fakat şehir merkezlerindeki çevresel etmenler nedeniyle GPS sinyali algılamasındatutarsızlıklar meydana gelmektedir. Mobil cihazlarda bulunan jiroskop, ivme ölçer, manyetometre gibiMikroelektromekaniksel Sistem (MEMS) sensörleri, taşıt dinamiği ölçümlerinde oldukça güçlü birpotansiyele sahip olmak ile birlikte taşıtlarda yön tahmini ile ilgili çalışmalar yapabilmek için de oldukçaelverişlidir. Akıllı mobil cihazlardaki manyetometre sensörleri, hassas yön tahmini yapabilmek içinkullanışlı duruma getirilebilirler. Fakat manyetometre sensörü tarafından ölçülen manyetik alan verisi,taşıtın ferromanyetik parçaları nedeni ile ciddi şekilde deforme olmaktadır. Bu çalışmada, hataparametreleri saptanarak hassas olarak taşıt yön tahmininin nümerik olarak elde edilebileceği ortayakonmuştur. Hata parametreleri matematiksel bir modele dönüştürülerek etki eden hatalar ham sensörverisinden elimine edilmiştir. Simülasyon sonuçlarına göre modelin ürettiği maksimum hata %3.4’tü

Effect of the Components of a Vehicle on a MEMS Magnetometer Sensor Output

Precise vehicle heading information is of great importance for many Intelligent Transportation Systems (ITS) applications. GPS-based localization and heading estimation is widely used in almost every transportation systems. However, dense urban environment causes inconsistency in the reception of the GPS signals. Given the diverse sensors within mobile devices, i.e., Microelectromechanical System (MEMS) sensors such as gyroscope, accelerometer, magnetometer etc., they have a strong potential for sensing vehicle dynamics and can promote a broad range of applications associated with heading estimation. A magnetometer sensor of a smart mobile device can be utilized to obtain accurate vehicle heading estimation. However, ferromagnetic components of a vehicle significantly deforms the magnetic field measured by magnetometer sensor. In this study, it is demonstrated that an accurate vehicle heading estimation can numerically be achieved through identifying error parameters. These parameters were then transformed into a mathematical model and contributing errors were eliminated from raw sensor output. Simulation results show that the model produces a maximum error of 3.4%.

___

  • 1. Abeygunawardana, T.D., 2014. Smart Data Collection Using Mobile Devices to Improve Transportation Systems, Dissertation, University of Nevada.
  • 2. Kim, Y.C., Yun, K.H., Min, K.D., 2014. Automatic Guidance Control of An Articulated All-wheel-streed Vehicle, Vehicle System Dynamics, 52, 456-474.
  • 3. Jackson, J.D., 1975. Introduction, Boundary Value Problems, Multipoles, Magnetostatics, Maxwell’s Equations, 1st ed. NY, John Wiley & Sons, Inc., ch. 1-6.
  • 4. Moron, C., Cabrera, C., Moron, A., Garcia, A., Gonzales, M., 2015. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review, Sensors, 15, 28340-28366.
  • 5. Kahler, G.R., Torre, E.D., Vajda, F., 1992. Static Magnetic Field Deformation by a Ferromagnetic Body, IEEE Transactions on Magnetics, 28, 2274-2276.
  • 6. Egziabher, D.G., Elkaim, G.H., Powell, J.D., Parkinson, B.W., 2006. Calibration of Strapdown Magnetometers in Magnetic Field Domain, Journal of Aerospace Engineering, 19, 87-102.
  • 7. Foster, C.C., Elkaim, G.H., 2008. Extension of a Two-Step Calibration Methodology to Include Nonorthogonal Sensor Axes, IEEE Transactions on Aerospace and Electronic Systems, 44(3), 1070-1078.
  • 8. Renaudin, V., Afzal, M.H., Lachapelle, G., 2010. Complete Triaxis Magnetometer Calibration in the Magnetic Domain, Journal of Sensors, 21, 1-10.
  • 9. Solzbach, U., Wollschlager, H., Zeiher, A., Just, H., 1988. Optical Distortion Due to Geomagnetism in Quantitative Angiography, Proceedings of Computers in Cardiology, Washington, DC.
  • 10. Macmillan, S., Ryeroft, M.J., 2010. The Earth’s Magnetic Field, National Env. Res. Council, Online Encyclopedia of Aerospace Engineering, John Wiley & Sons, Inc.
  • 11. Kittel, C., 2004. “Ferromagnetism and Antiferromagnetism” An Introduction to Solid State Physics, 8th ed. NY, John Wiley & Sons, Inc.
  • 12. Low, L., Riddle, A., 2012. Simulation of the Effects of Vehicle Bodyshell on Low Frequency Magnetic Fields due to High Voltage Power Cables in Electric Vehicles, IEEE International Symposium on Electromagnetic Compatibility, Rome, Italy.
  • 13. Wolff, J., Heuer, T., Gao, H., Weinmann, M., Voit, S., Hartmann, U., 2006. Parking Monitor System Based on Magnetic Field Sensors, Proceedings of the IEEE Intelligent Transportation Systems Conference, Toronto, Canada.
  • 14. Markevicius, V., Navikas, D., Zilys, M., Andriukaitis, D., Valinevicius, A., Cepenas, M., 2016. Dynamic vehicle detection via the use of magnetic field sensors, Sensors, 16, 1-9.