An Experimental Evaluation of Control Modes for Pneumatic Artificial Muscles Using Fast on/off Valves

Pneumatic Artificial Muscles (PAM) are versatile actuators having many advantages such as high force to weight ratio, soft and flexible structure, extreme safe for human, ease of maintenance and low cost. On the other hand, their inherent nonlinear characteristics yields difficulties in control actions, which is animportant factor restricting wide-spread use of PAM. In literature, there are studies to resolve the control issue and their results indicate that there is still requirement for a simple and effective control system. In this work, as a first step of achieving the control goal, three common nonlinear controllers used in literature are selected for an experimental evaluation. The implemented controllers are ‘Classical PID controller’, ‘Fuzzy PID controller’ and ‘Sliding-Mode Controller’ (SMC). The evaluation is performed using a test rig, which is a 1-D robotic arm orthosis actuated by Festo PAMs operated with fast on/off valves. According to experimental results, a model-free Sugeno type combined fuzzy PID controller has yielded most successful performance indicating that it could be a simple and effective solution for PAMcontrol issue.

Yapay Pnömatik Kaslar için Denetim Kiplerinin Hızlı Aç/Kapa Valfler Kullanarak Deneysel Bir Değerlendirmesi

Pnömatik Yapay Kaslar (PAM), yüksek kuvvet/ağırlık oranı, yumuşak ve esnek yapı, insan için aşırı güvenli, bakım kolaylığı ve düşük maliyet gibi birçok avantaja sahip çok yönlü eyleyicilerdir. Öte yandan, doğrusal olmayan karakteristik özellikleri, PAM’ın yaygın kullanımını kısıtlayan önemli bir faktör olarak, kontrol eylemlerinde zorluklar getirir. Literatürde kontrol sorununu çözmek için çeşitli çalışmalar vardır ve o çalışmaların sonuçları hala basit ve etkili bir kontrol sistemine ihtiyaç olduğunu göstermektedir. Bu çalışmada, kontrol hedefine ulaşmanın ilk adımı olarak, literatürde yaygın kullanılan üç doğrusal olmayan kontrolör, deneysel bir değerlendirme için seçilmiştir. Uygulanan kontrolörler, ‘Klasik PID denetleyici’, ‘Bulanık PID Denetleyici’ ve ‘Kayan Kipli Denetleyicidir’ (SMC). Performans değerlendirmesi, hızlı on/off valfleri ile çalıştırılan Festo PAM’lar tarafından sürülen, 1-D robotik kol ortezi olan bir test teçhizatı kullanılarak gerçekleştirilmiştir. Deney sonuçlarına göre, model serbest bir Sugeno tipi kombine bulanık PID kontrolörü, pnömatik yapay kasların (PAM) kontrol sorunu için basit ve etkili bir çözüm olabileceğini göstererek en başarılı performansı vermiştir.

___

1. Caldwell, D.C., Tsagarakis, N., 2007. “Soft” Exoskeletons for Upper and Lower Body Rehabilitation-Design, Control and Testing. Int J Humanoid Robot, 4, 1–24.

2. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S., 2014. A Survey on Robotic Devices for Upper Limb Rehabilitation. Journal of Neuroengineering and Rehabilitation, 11(1), 3.

3. Repperger, D.W., Phillips, C.A., Neidhard-Doll, A., Reynolds, D.B., Berlin, J., 2005. Power/energy Metrics for Controller Evaluation of Actuators Similar to Biological Systems. Mechatronics, 15(4), 459-469.

4. Tondu, B., P., Lopez, 2000. Modeling and Control of McKibben Artificial Muscle Robot Actuators, IEEE Control Systems Magazine 20(2), 15-38.

5. Daerden, F., Lefeber, D., 2002. Pneumatic Artificial Muscles: Actuators for Robotics and Automation, European Journal of Mechanical and Environmental Engineering, 47(1), 11-21.

6. Festo, Fluidic Muscle DMSP/MAS, Festo Brochure, 2018.

7. Jouppila, V.T., Gadsden, S.A., Bone, G.M., Ellman, A.U., Habibi, S.R., 2014. Sliding Mode Control of a Pneumatic Muscle Actuator System with a PWM Strategy. International Journal of Fluid Power, 15(1), 19-31.

8. Wickramatunge, K.C., Leephakpreeda, T., 2009. Empirical Modeling of Pneumatic Artificial Muscle. In Proceedings of the International Multi Conference of Engineers and Computer Scientists, 2.

9. Chang, M.K., Liou, J.J., Chen, M.L., 2011. T–S Fuzzy Model-based Tracking Control of a One-dimensional Manipulator Actuated by Pneumatic Artificial Muscles. Control Engineering Practice, 19(12), 1442-1449.

10. Ahn, K.K., Thanh, T.D.C., 2005. Nonlinear PID Control to Improve the Control Performance of the Pneumatic Artificial Muscle Manipulator Using Neural Network. Journal of Mechanical Science and Technology, 19(1), 106–115.

11. Andrikopoulos, G., Nikolakopoulos, G., Manesis, S., 2014. Advanced Nonlinear PIDbased Antagonistic Control for Pneumatic Muscle Actuators. IEEE Transactions on Industrial Electronics, 61(12), 6926-6937.

12. Xing, K., Huang, J., Wang, Y., Wu, J., Xu, Q., He, J., 2010. Tracking Control of Pneumatic Artificial Muscle Actuators Based on Sliding Mode and Non-linear Disturbance Observer. IET Control Theory & Applications, 4(10), 2058-2070.

13. Aschemann, H., Schindele, D., 2008. Slidingmode Control of a High-speed Linear Axis Driven by Pneumatic Muscle Actuators. IEEE Transactions on Industrial Electronics, 15(11), 3855–3864.

14. Xing, K., Huang, J., He, J., Wang, Y., Xu, Q., Wu, J., 2012. Sliding Mode Tracking for Actuators Comprising Pneumatic Muscle and Torsion Spring. Transactions of the Institute of Measurement and Control, 34(2-3), 255-277.

15. Andrikopoulos, G., Nikolakopoulos, G., Manesis, S., 2013. Pneumatic Artificial Muscles: A Switching Model Predictive Control Approach. Control Engineering Practice, 21(12), 1653-1664.

16. Chiang, C., Chen, Y., 2018. Incremental Fuzzy Sliding Mode Control of Pneumatic Muscle Actuators. International Journal of Innovative Computing Information & Control IJICIC, 14(5), 1917-1928.

17. Krishna, S., Nagarajan, T., Rani, A., 2011. Review of Current Development of Pneumatic Artificial Muscle. Journal of Applied Sciences,11, 1749-1755.

18. Jouppila, V., 2014. Modeling and Control of a Pneumatic Muscle Actuator, Tampere University of Technology, Publication; 1199.

19. Kelasidi, E., Andrikopoulos, G., Nikolakopoulos, G., Manesis, S., 2011. A Survey on Pneumatic Muscle Actuators Modeling. In 2011 IEEE International Symposium on Industrial Electronics,1263-1269. IEEE.

20. Chou, C.P., Hannaford, B. 1996. Measurement and Modeling of McKibben Pneumatic Artificial Muscle, IEEE Transactions on Robotics and Automation, 12(1), 90-102.

21. Reynolds, D., Repperger, D., Phillips, C., Bandry, G., 2003. Modeling the Dynamic Characteristics of Pneumatic Muscle. Annals of Biomedical Engineering, 31(3), 310-317.

22. Slotine, J.J.E., Li, W., 1991. Applied Nonlinear Control, Prentice Hall of India put. Limited, New Delhi.

23. Wang, J., Rad, A.B., Chan, P.T., 2001. Indirect Adaptive Fuzzy Sliding Mode Control: Part I: Fuzzy Switching. Fuzzy Sets and Systems,122(1), 21-30.

24. Qian, J., Huang, J., Ri, S., 2015. Adaptive Fuzzy Sliding Mode Control for Pneumatic Muscle Actuator. In 2015 Chinese Automation Congress (CAC), 431-436. IEEE.

25. Ziegler, J.G., Nichols, N.B., 1942. Optimum Settings for Automatic Controllers. Transactions of the ASME, 64, 759–768.

26. Jantzen, J., 1998. Tuning of Fuzzy PID Controllers. Technical University of Denmark, Department of Automation, Bldg, 326.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ