Alkali ile Aktive Edilmiş Cüruf Harçlarının Yangın Direnci

Çalışmada, alkali ile aktive edilmiş cüruf harçlarının yüksek sıcaklıklara maruz bırakılması sonrasındaki eğilme ve basınç mukavemetleri Portland çimentolu kontrol harcı ile kıyaslanmıştır. Öğütülmüş granüle yüksek fırın cürufunun, ağırlıkça %100 oranında çimento ile yer değiştirilerek kullanıldığı çalışmada, harç karışımlarının su/bağlayıcı oranı 0,5 ve kum/bağlayıcı oranı 3,0 olmuştur. Cürufun aktivasyonunda, ağırlıkça cüruf miktarına göre %4, %6 ve %8 Na konsantrasyonlarındaki sıvı sodyum silikattan yararlanılmış olup, karışımlar içerisinde 0,75, 1,0, 1,25 ve 1,5 gibi farklı silikat modülleri (Ms=SiO2/Na2O) elde edebilmek amacıyla sıvı sodyum silikat, sodyum hidroksit ile beraber karıştırılmıştır. Ulaşılan bulgulardan, alkali ile aktive edilmiş cüruf harçlarının yangına karşı direncinin Portland çimentolu kontrol harcından daha iyi olduğu ve harçların yüksek sıcaklıklara karşı direncinin, uygulanan soğutma metodu ile sıcaklık seviyesine bağlı olduğu görülmüştür.

The Fire Resistance of Alkali-Activated Slag Mortars

In this study, the compressive and flexural strength of alkali activated slag mortars subjected to high temperatures were investigated, and the results obtained from the tests were compared with the control mortar. In the experiments, sand and water quantities were kept constant throughout the tests. Water/binder and sand/binder ratios were 0.5 and 3.0, respectively. Ground granulated blast furnace slag was used at 100% replacement by weight of cement in the tests. For slag activation, liquid sodium silicate at 4%, 6% and 8% Na dosages was used, and liquid sodium silicate and sodium hydroxide were blended to obtain 0.75, 1.00, 1.25 and 1.50 modulus ratio of SiO2/Na2O. The findings showed that the fire resistance of alkali activated slag mortars were better than mortar with Portland cement. Additionally, the resistance of mortars to high-temperatures seemed to be dependent on temperature level and the cooling method.

___

  • Collins, F.G., Sanjayan, Workability and Mechanical Properties of Alkali Activated Slag Concrete, Cement and Concrete Research, Vol. 29, No. 3, pp. 455- 458. J.G., 1999.
  • Chang, J.J., Yeih, W., Hung, C.C., 2005. Effects of Gypsum and Phosphoric Acid on the Properties of Sodium Silicate-Based Alkali- Activated Slag Pastes, Cement and Concrete Composites, Vol. 27, No. 1, pp. 85-91.
  • Puertas, F., Amat, T., Jiménez, A. F., Vázquez, T., 2003. Mechanical and Durable Behaviour of Alkaline Cement Mortars Reinforced With Polypropylene Fibres, Cement and Concrete Research, Vol. 33, No. 12, pp. 2031-2036.
  • Wang, S. D., 2000. The Role of Sodium During Hydration of Alkali-Activated Slag, Advances in Cement Research, Vol. 12, No. 2, pp. 65-69.
  • Palacios, M., Puertas, F., 2007. Effect of Shrinkage-Reducing Admixtures on the Properties of Alkali-Activated Slag Pastes and Mortars, Cement and Concrete Research, Vol. 37, No. 5, pp. 691-702.
  • Neto, A. A. M., Cincotto, M. A., Repette, W., 2008. Drying and Autogenous Shrinkage of Pastes and Mortars With Activated Slag Cement, Cement and Concrete Research, Vol. 38, No. 4, pp. 565-574.
  • Wang, S. D, Pu, X. C, Scrivener, K. L, Pratt, P. L., 1995. Alkali-Activated Slag Cement and Concrete: A Review of Properties and Problems, Advances in Cement Research, Vol. 7, No. 27, pp. 93-102.
  • Bakharev, T., Sanjayan, J.G, Cheng, Y., 1999. Alkali Activation of Australian Slag Cements, Cement and Concrete Research, Vol. 29, No. 1, pp. 113-120.
  • Jiménez, A.F., Palomo, J.G., Puertas, F., 1999. Alkali-Activated Slag Mortars: Mechanical Strength Behavior, Cement and Concrete Research, Vol. 29, No. 8, pp. 1313-1321.
  • Atis, C.D., Bilim, C., Çelik, Ö., Karahan, O., 2009. Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar, Construction and Building Materials, Vol. 23, No. 1, pp. 548-555.
  • Karahan, O., Yakupoğlu, A., 2011. Resistance of Alkali-Activated Slag Mortar to Abrasion and Fire, Advances in Cement Research, Vol. 23, No. 6, pp. 289-297.
  • Al-Otaibi, S., 2008. Durability of Concrete İncorporating GGBS Activated by Water- Glass, Construction and Building Materials, Vol. 22, No. 10, pp. 2059-2067.
  • TS EN 197-1, 2012. Çimento - Bölüm 1: Genel Çimentolar - Bileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, Ankara.
  • TS EN 196-1, 2009. Çimento Deney Metotları - Bölüm 1: Dayanım Tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-11, 2000. Kâgir Harcı Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara.
  • Bilim, C., Karahan, O., Atiş, C. D, İlkentapar, S.,2015. Effects of Chemical Admixtures and Curing Conditions on Some Properties of Alkali-Activated Cementless Slag Mixtures, KSCE Journal of Civil Engineering, Vol. 19, No. 3, pp. 733-741.
  • Yang, K. H., Song, J. K., Ashour, A. F., Lee,E.T., 2008. Properties of Cementless Mortars Activated by Sodium Silicate, Construction and Building Materials, Vol. 22, No. 9, pp. 1981-1989.
  • Bilim, C., Karahan, O., Atiş, C. D., İlkentapar, S., 2013. Influence of Admixtures on the Properties of Alkali-Activated Slag Mortars Subjected to Different Curing Conditions, Materials & Design, Vol. 44, pp. 540-547.
  • Aydın, S., Baradan, B., 2012. Mechanical and Microstructural Properties of Heat Cured Alkali-Activated Slag Mortars, Materials & Design, Vol. 35, pp. 374-383.
  • Krizan, D., Zivanovic, B., 2002. Effects of Dosage and Modulus of Water Glass on Early Hydration of Alkali-Slag Cements, Cement and Concrete Research, Vol. 32, No. 8, pp. 1181- 1188.
  • Khoury, G. A., 1992. Compressive Strength of Concrete at High Temperatures: A Reassessment, Magazine of Concrete Research, Vol. 44, No. 161, pp. 291-309.
  • Dias, W.P.S., Khoury, G.A., Sullivan, P.J.E., 1990. Mechanical Properties of Hardened Cement Paste Exposed to Temperatures up to 700°C, ACI Materials Journal Vol. 87, No. 2, pp. 160-166.
  • Hossain, K.M.A., 2006. High Strength Blended Cement Concrete Incorporating Volcanic Ash: Performance at High Temperatures, Cement and Concrete Composites, Vol. 28, No. 6, pp. 535-545.
  • Xu, Y., Wong, Y.L., Poon, C.S., Anson, M., 2001. Impact of High Temperature on PFA Concrete, Cement and Concrete Research, Vol. 31, No. 7, pp. 1065-1073.
  • Poon, C.S., Azhar, S., Anson, M., Wong, Y.L., 2001. Comparison of the Strength and Durability Performance of Normal and High- Strength Pozzolanic Concretes at Elevated Temperatures, Cement and Concrete Research, Vol. 31, No. 9, pp. 1291-1300.
  • Aydın, S., 2008. Development of a High- Temperature-Resistant Mortar by Using Slag and Pumice, Fire Safety Journal, Vol. 43, No. 8, pp. 610-617.
  • Bilim, C., 2014. Influence of Clinoptilolite Replacement on Durability of Cement Mortars, Journal of Materials in Civil Engineering, Vol. 26, No. 3, pp. 520-526.
  • Mohamedbhai, G.T.G., 1986. Effect of Exposure Time and Rates of Heating and Cooling on Residual Strength of Heated Concrete, Magazine of Concrete Research, Vol. 38, No. 136, pp. 151-158.
  • Guerrieri, M., Sanjayan, J., Collins, F., 2009. Residual Compressive Behavior of Alkali- Activated Concrete Exposed to Elevated Temperatures, Fire Materials, Vol. 33, No. 1, pp. 51-62.
  • Kong, D.L.Y., Sanjayan, J.G., 2010. Effect of Elevated Temperatures on Geopolymer Paste, Mortar and Concrete, Cement and Concrete Research, Vol. 40, No. 2, pp. 334-339.
  • Xu, Y., Wong, Y.L., Poon, C.S., Anson, M., 2003. Influence of PFA on Cracking of Concrete and Cement Paste After Exposure to High Temperatures, Cement and Concrete Research, Vol. 33, No. 12, pp. 2009-2016.
  • Özturan, T., Cülfik, M. S., 2002. Effect of Elevated Temperatures on the Residual Mechanical Properties of High-Performance Mortar, Cement and Concrete Resarch, Vol. 32, No. 5, pp. 809-816.
  • Li, M., Qian, C., Sun, W., 2004. Mechanical Properties of High Strength Concrete After Fire, Cement and Concrete Research, Vol. 34, No. 6, pp. 1001-1005.