24 Ocak 2020 Sivrice (Elazığ) Depreminin Şartlı Olasılığının Değerlendirilmesi

Bu çalışmada dört farklı istatistiksel dağılım modeli (Weibull, Rayleigh, üstel ve log-normal dağılım modelleri) uygulanarak 24 Ocak 2020 Sivrice (Elazığ) depreminin şartlı olasılığı hesaplanmıştır. Bu hesaplamalar için, bölgede 1900 yılı ile 2019 yılları arasında meydana gelmiş M≥4,7 depremlerin tekrarlama periyotları kullanılmıştır. Modeller ile kullanılan veri arasındaki uyum ilişkisi üç farklı test kriteri (Olabilirlik değeri (lnL), Akaike ve Bayesian bilgi kriteri) ile değerlendirilirmiştir. Log-normal model, çalışma verisini en iyi temsil eden model olarak belirlenmiştir. Çalışma sonuçlarına göre Sivrice (Elazığ) depreminin şartlı olasılık değerleri (t=0 ve te=2 için); Log-normal modele göre %80, üstel modele göre %72, Weibull modele göre %70, Rayleigh modele göre %36 olarak hesaplanmıştır.

Evaluation of the Conditional Probability of January 24, 2020 Sivrice (Elazığ) Earthquake

In this study, the conditional probability of 24 January 2020 Sivrice (Elazığ) earthquake was calculated by applying four different statistical distribution models (Weibull, Rayleigh, exponential and log-normal distribution models). For these calculations, the recurrence periods of M≥4.7 earthquakes that occurred between 1900 and 2019 in the region were used. The fitting between the models and the data was evaluated with three different test criteria (Likelihood value (lnL), Akaike and Bayesian information criteria). Log-normal model was determined as the model that best represents the study data. According to the results of the study, the conditional probability values of the Elazig (Sivrice) earthquake (for t = 0 and te = 2) were calculated as 80% to the log-normal model, as 72% to the exponential model, as 70% to the Weibull model, and as 36% to the Rayleigh model.

___

  • 1. Reilinger, R., Mcclusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliyev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Karam, G., 2006. GPS Constraints on Continental Deformation in the Africa- Arabia Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. J. Geophys. Res. Atmosph. 111, B05411.
  • 2. Mcclusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H.G., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Veis, G., 2000. Global Positioning System Constraintson Plate Kinematics and Dynamics in the Eastern Mediterra-nean and Caucasus. J. Geophys. Res. 105, 5695–5719.
  • 3. Aktuğ, B., Özener, H., Doğru, A., Sabuncu, A., Turgut, B., Halıcıoğlu, K., Yılmaz, O., Havazlı, E., 2016. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. J. Geodynamics 94(95), 1-12.
  • 4. Parvez, I.A., Ram, A., 1999. Probabilistic Assessment of Earthquake Hazards in the Indian Subcontinent. Pure Appl. Geophys. 154, 23–40.
  • 5. Tripathi, J.N., 2006. Probabilistic Assessment of Earthquake Recurrence in the January 26. 2001 Earthquake Region of Gujarat. India J. Seismol. 10, 119–130.
  • 6. Polat, O., Yılmaz, E., 2008. Earthquake Hazard of the Aegean Extension Region (West Turkey). Turkish Journal of Earth Sciences. 17(3), 593-614.
  • 7. Yadav, R.B.S., Tripathi, J.N., Rastogi, B.K., Das, M.C., Chopra, S., 2010. Probabilistic Assessment of Earthquake Recurrence in Northeast India and Adjoining Region. Pure Appl. Geophys. 167(11), 1331–1342.
  • 8. Öztürk, S., 2011. Characteristics of Seismic Activity in the Western, Central and Eastern Parts of the North Anatolian Fault Zone, Turkey: Temporal and Spatial Analysis. Acta Geophys. 59(2), 209–238.
  • 9. Öztürk, S., 2020. A Study on the Variations of Recent Seismicity in and Around the Central Anatolian Region of Turkey. Physics of the Earth and Planetary Interiors 301, 106453.
  • 10. Sayıl, N., 2014. Evaluation of the Seismicity for the Marmara Region with Statistical Approaches. Acta Geophys. 49 (3), 265-281.
  • 11. Bayrak, E., Yılmaz, Ş., Softa, M., Turker, T., Bayrak, Y., 2015. Earthquake Hazard Analysis for East Anatolian Fault Zone, Turkey. Nat Hazards 76, 1063-1077.
  • 12. Bayrak, E., Yılmaz, Ş., Bayrak, Y., 2017. Temporal and Spatial Variations of Gutenberg- Richter Parameter and Fractal Dimension in Western Anatolia. Turkey Journal of Asian Earth Sciences. 138, 1-11.
  • 13. Sil, A., Sitharam, T.G., Haider, S.T., 2015. Probabilistic Models for Forecasting Earthquakes in the Northeast Region of India. Bull. Seism. Soc. Am. 105(6), 2910-2927.
  • 14. Pasari, S., 2018. Stochastic Modelling of Earthquake Interoccurrence Times in Northwest Himalaya and Adjoining Regions. Geomatics, Natural Hazards and Risk. 9(1), 568-588.
  • 15. Pasari, S., Dikshit, O., 2014. Impact of Three- parameter Weibull Models in Probabilistic Assessment of Earthquake Hazards. Pure Appl Geophys 171(7), 1251–1281.
  • 16. Pasari, S., Dikshit, O., 2015. Earthquake Interevent Time Distribution in Kachchh. Northwestern India. Earth Planets Space. 67, 129.
  • 17. Pasari, S., Dikshit, O., 2018. Stochastic Earthquake Interevent Time Modeling from Exponentiated Weibull Distributions. Nat Hazards. 90(2), 823–842.
  • 18. Coban, K.H., Sayıl, N., 2018. Investigation of the Seismicity of East Anatolian Fault Zone (EAFZ) According to Poisson and Exponential Distribution Models. Duzce University Journal of Science and Technology. 6 (2), 491-500.
  • 19. Rikitake, T., 1991. Assessment of Earthquake Hazard in the Tokyo Area, Japan. Tectonophysics. 199, 121–131.
  • 20. Ferraes, S.G., 2003. The Conditional Probability of Earthquake Occurrence and the Next Large Earthquake in Tokyo. Jpn. J. Seismol. 7, 145–153.
  • 21. Coban, K.H., Sayil, N., 2019. Evaluation of Earthquake Recurrences with Different Distribution Models in Western Anatolia. J. Seismol. 23, 1405–1422.
  • 22. Coban, K.H., Sayil, N., 2020. Conditional Probabilities of Hellenic Arc Earthquakes Based on Different Distribution Models. Pure Appl. Geophys. https://doi.org/10.1007/ s00024-020-02576-z.
  • 23. Coban, K.H., Sayil, N., 2020. Different Probabilistic Models for Earthquake Occurrences Along the North and East Anatolian Fault Zones. Arab. J. Geosci. 13, 971. https://doi.org/10.1007/s12517-020-05945-z.
  • 24. McKenzie, D., 1976. The East Anatolian Fault: A Major Structure in Eastern Turkey. Earth and Planetary Science Letters. 29, 1.
  • 25. Dewey, J.F., Hempton, M.R., Kidd, W.S.F., Şaroğlu, F., Şengör, A.M.C., 1986. Shortening of Continental Lithosphere: the Neotectonics of Eastern Anatolia-a Young Collision Zone. Geological Society London Special Publications 19, 1-36.
  • 26. Yönlü, O., Altunel, E., Karabacak, V., 2017. Geological and Geomorphological Evidence for the Southwestern Extension of the East Anatolian Fault Zone, Turkey. Earth Planet Sci. Lett. 469, 1-14.
  • 27. Jackson, J., McKenzie, D., 1984. Active Tectonics of the Alpine-Himalayan Belt Between Western Turkey and Pakistan. Geohysics J.R. Ast.Soc., 185,264.
  • 28. Şengör, A., Görür, N., Şaroğlu, F., 1985. Strike-slip Faulting and Related Basin Formation in Zones of Tectonic Escape; Turkey as a Case Study in; Biddle K.T., Christie-Blick N. (Eds). Strike-slip Faulting and Basin Formation. Soc. Econ. Paleonotol. Mineral.Sp. Pub., 37, 227-264.
  • 29. Şaroğlu, F., Emre, Ö., Kuşçu, İ., 1992. The East Anatolian Fault Zone of Turkey. Annales Tectonicae.6, 99-125.
  • 30. Demirtaş, R., 2003. DAFZ’nda Deprem Üreten Diri Faylar; 1900-2003 Yılları Arasında Doğu Anadolu Fay Zonunda Olmuş Hasar Yapıcı Depremler. TMMOB Jeoloji Mühendisleri Odası Yayınları. 78, 3.
  • 31. Westaway, R., 2003. Kinematics of the Middle East and Eastern Mediterranean Updated. Turkish Journal of Earth Sciences. 12(1), 5-46.
  • 32. Aksoy, E., İnceöz, M., Koçyiğit, A., 2007. Lake Hazar Basin: A Negative Flower Structure on the East Anatolian Fault System (EAFS), SE Turkey. Turkish Journal of Earth Sciences. 16, 1. Ambraseys, N. N., Jackson, J. A., 1998. Faulting Associated with Historical and Recent Earthquakes in the Eastern Mediterranean Region. Geophysical Journal International, 133(2), 390-406.
  • 33. Ambraseys, N.N., Jackson, J.A., 1998. Faulting Associated with Historical and Recent Earthquakes in the Eastern Mediterranean Region. Geophysical Journal International, 133(2), 390-406.
  • 34. Taymaz, T., Eyidog̃an, H., Jackson, J., 1991. Source Parameters of Large Earthquakes in the East Anatolian Fault Zone (Turkey). Geophysical Journal International. 106(3), 537–550.
  • 35. Zor, E., Gurbuz,C., Turkelli, N., Sandvol, E., Seber,D., Barazangi, M., 2003. The Crustal Structure of the East Anatolian Plateau from Receiver Functions. Geophys. Res. Lett. 30 (24), 8044.
  • 36. Pamukçu, O., Akçığ, Z., Demirbaş, Ş., Zor, E., 2007. Investigation of Crustal Thickness in Eastern Anatolia Using Gravity, Magnetic and Topographic Data. Pure appl. Geophys. 164, 2345–2358.
  • 37. Sertçelik, F., 2012. Estimation of Coda Wave Attenuation in the East Anatolia Fault Zone, Turkey. Pure Appl. Geophys. 169(7), 1189-1204.
  • 38. Bektaş, Ö., 2013. Thermal Structure of the Crust in Inner East Anatolia from Aeromagnetic and Gravity Data. Physics of the Earth and Planetary Interiors. 221, 27-37.
  • 39. Oruç, B., Gomez-Ortiz, D., Petit, C., 2017. Lithospheric Flexural Strength and Effective Elastic Thicknesses of the Eastern Anatolia (Turkey) and Surrounding Region. Journal of Asian Earth Sciences. 150, 1-13.
  • 40. Kaypak, B., 2008. Three-dimensional VP and VP/VS Structure of the Upper Crust in the Erzincan Basin (Eastern Turkey). Journal of Geophysical Research: Solid Earth, 113(7), 20.
  • 41. Özer, C., Özyazıcıoğlu, M., Gök, E., Polat, O., 2019. Imaging the Crustal Structure Throughout the East Anatolian Fault Zone, Turkey, by Local Earthquake Tomography. Pure. Appl. Geophys. 176(6), 2235–2261.
  • 42. Konakoğlu, B., Akar, A., 2020. Elazığ ve Çevresindeki İllerde Meydana Gelen Tektonik Hareketlerin TUSAGA-Aktif İstasyonlarının Konumlarına Etkisinin Statik Deformasyon Modeller Kullanılarak İncelenmesi. Geomatik. 6(2), 165-178.
  • 43. AFAD, 2020. 24 Ocak 2020 Sivrice (Elazığ) Depremi Rapor.
  • 44. Gardner, J.K., Knopoff, L., 1974. Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian? Bull. Seismol. Soc. Am. 64(5), 1363–1367.
  • 45. Urhammer, R.A., 1986. Characteristics of Northern and Central California Seismicity. Earthq Notes. 1, 21.
  • 46. Johnson, N.L., Kotz, S., Balakrishnan, N., 1995. Continuous Univariate Distributions. New York: Wiley.
  • 47. Raftery, A.E., 1995. Bayesian Model Selection in Social Research. Sociological Methodology. 25, 11-163.
  • 48. Cetin, H., Guneyli, H., Mayer, L., 2003. Paleoseismology of the Palu-Lake Hazar Segment of the East Anatolian Fault Zone, Turkey. Tectonophysics. 374, 163-197.
  • 49. Güneyli, H., 2002. Doğu Anadolu Fay Sistemi, Palu-Hazar Gölü Segmentinin Neotektonigi ve Paleosismolojisi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 142, Adana.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

iDAR Verisi Yardımıyla Otomatik Dalga Boyu Bandı Yaklaşımı Kullanılarak Hiperspektral Görüntülerde Spektral Değişkenliğin Azaltılması

Sevcan KAHRAMAN

Analysis of Splicing Method on Bursting Strength of the Knitted Fabrics

Seval UYANIK

Elektrik Kontak Kesicilerde Kullanabilmek için Aşınma Dirençli Polimer ve Polimer Kompozit Malzemelerin Belirlenmesi

Hasan Hüseyin ÜNAL, Salih Hakan YETGİN

Antibacterial and Optical Properties of Mn Doped ZnO Nanopowders Synthesized via Spray Drying and Subsequent Thermal Decomposition

Şeyma DUMAN, Büşra BULUT, Burak ÖZKAL

Theoretical Analysis on the Thermal and Electrical Properties of Fiber Reinforced Laminates Modified with CNTs

Fatih DARICIK, Alparslan TOPCU

Ç2842, MS58 ve Al 6013 Malzemelerin Elektolitik Ni Kaplanmasında Kaplama Kalınlığı ve Yüzeysel Özelliklerin İncelenmesi

Harun KOÇAK

Çimento Üretim Sektöründe ISO 14001 Çevre Yönetim Sisteminin Enerji Kazanımı ve İklim Değişikliği Üzerine Etkilerinin İncelenmesi

Bülent SARI, Şeyda Y. GEYİK, Olcayto KESKİNKAN

Püskürtmeli Kurutma ve Ardından Termal Bozunma ile Sentezlenen Mn Katkılı ZnO Nanotozların Antibakteriyel ve Optik Özellikleri

Şeyma DUMAN, Büşra BULUT, Burak ÖZKAL

Ülkemiz Madencilik Sektöründe Görülen Meslek Hastalıklarının İncelenmesi

İlknur EROL

Kavisli Delikli Plaka ile Girdap Kaynaklı Türbülanslı Akışın Kontrolü

Göktürk Memduh ÖZKAN, Tahir DURHASAN, Pınar Engin FİDANCI