Asma Yaprağından Antioksidan Bileşiklerin Mikrodalga Destekli Ekstraksiyonunun Optimizasyonu

Bu çalışmada, asma yaprağından antioksidan bileşiklerin ekstraksiyonu için mikrodalga destekli ekstraksiyonun parametreleri (katı/sıvı oranı, süre ve güç) yüzey yanıt yönteminin box-behnken dizaynı (BBD) kullanılarak belirlenmiştir. BBD bağımsız değişkenlerin toplam fenolik madde içeriği(TPC), DPPH radikal süpürücü aktivite ve trolox eşdeğeri antioksidan kapasite(TEAC) üzerine etkisini belirlemek amaçlı kullanılmıştır. Asma yaprağının mikrodalga destekli ekstraksiyonu için optimum koşullar; 30g 100mL-1 katı/sıvı oranı, 300w güç ve 300 s süre olarak belirlenmiştir. Modelin tümü anlamlı bulunmuş ve bağımsız değişkenlerin önemi (R2) TPC, DPPH süpürücü aktivite ve TEAC, sırasıyla 0.9282, 0.9340 ve 0.9380 olarak ve dizaynın tahminlediği deneysel veriler ise 58.20 mg GAE/ mL ekstrakt, 95.91% ve 65.12% olarak bulunmuştur. Sonuçlar solvent ekstraksiyonu ile karşılaştırıldığında mikrodalga destekli üretilen asma yaprağı antioksidanlarının daha düşük sürede daha yüksek değerlere sahip olduğu görülmüştür.

Antioxidant Properties of Grapevine Leaves Obtained by Optimized Microwave Assisted Extraction

In this study, the optimum microwave assisted extraction (MAE) parameters (solid/liquid ratio, time and power) determined by Box-Behnken Design (BBD) of Response Surface Methodology (RSM) for the extraction of antioxidant compounds from grapevine leaves. The BBD was used to define the effects of independent variables on Total Phenolic Content (TPC), DPPH radical scavenging activity and Trolox Equivalent Antioxidant Capacity (TEAC). Second-order polynomial model and regression analysis were used for prediction optimum point. The optimum conditions for MAE of grapevine leaves were determined as solid/liquid ratio of 30%, power of 300 W and time of 300 sec. All of the models was found valid and significant independent variables (R2) were found as 0.9282, 0.9340 and 0.9380 and the predicted experimental value of design 58.204 mg GAE/ mL extract, 95.905% and 65.123% for TPC, DPPH scavenging activity and TEAC, respectively. The results of the present showed that MAE of grapevine leaves produce the extracts with a higher antioxidant values in a shorter time when compared with solvent extraction.

___

  • Aguilar, T., Loyola, C., de Bruijn, J., Bustamante, L., Vergara, C., von Baer, D., Serra, I. (2016). Effect of thermomaceration and enzymatic maceration on phenolic compounds of grape must enriched by grape pomace, vine leaves and canes. Eur Food Res and Technol 242(7), 1149-1158.
  • Amutha Gnana Arasi, M. A. S., Gopal Rao, M., & Bagyalakshmi, J. (2016). Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits. Int j of biol macroml 91, 227-232.
  • Anđelković, M., Radovanović, B., Anđelković, A. M., & Radovanović, V. (2015). Phenolic Compounds and Bioactivity of Healthy and Infected Grapevine Leaf Extracts from Red Varieties Merlot and Vranac (Vitis vinifera L.). Plant Foods for Hum Nutr 70(3), 317-323.
  • Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Response surface design evaluation and comparison. J Stat Plan Infer 139(2), 629-641.
  • Badwaik, L. S., Prasad, K., & Deka, S. C. . (2012). Optimization of extraction conditions by response surface methodology for preparing partially defatted peanut Int Food Res J 119, 341-346.
  • Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.
  • Box, G. E. P., Wilson, K. B. . (1951). On the experimental attainment of optimum conditions. J R Stat Soc, 13, 1-45.
  • Carbone, K., & Mencarelli, F. (2015). Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes. Food and Bioprocess Tech, 8(8), 1739-1749.
  • Chen, S. S., & Spiro, M. (1995). Kinetics of microwave extraction of rosemary leaves in hexane, ethanol and a hexane+ ethanol mixture. Flavour Fragr j 10(2), 101-112.
  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food chem, 166, 585-595.
  • Dhobi, M., Mandal, V., & Hemalatha, S. (2009). Optimization of microwave assisted extraction of bioactive flavonolignan - silybinin j chem metrology, 3(1), 13-23.
  • FAOSTAT. (2015). Food and Agriculture Organization of the United Nations Statistics Division. . Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M., & Molaie, R. (2016). Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food chem, 199, 847-855.
  • Felicio, J., Santos, R. d. S., & Gonçalez, E. (2001). Chemical constituents from Vitis vinifera (Vitaceae). Arquivos do Instituto Biológico, 68(1), 47-50.
  • Harb, J., Alseekh, S., Tohge, T., & Fernie, A. R. (2015). Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions. Phytochemistry, 117, 444-455.
  • Hayta, M., & İşçimen, E. M. (2017). Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LWT-Food Sci and Technol 77, 208-216.
  • Heleno, S. A., Prieto, M., Barros, L., Rodrigues, A., Barreiro, M. F., & Ferreira, I. C. (2016). Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. Food and Bioprod Processing, 100, 25-35.
  • Hemwimon, S., Pavasant, P., & Shotipruk, A. (2007). Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep Purif Technol 54(1), 44-50.
  • Katalinić, V., Generalić, I., Skroza, D., Ljubenkov, I., Teskera, A., Konta, I., & Boban, M. (2009). Insight in the phenolic composition and antioxidative properties of Vitis vinifera leaves extracts. Croatian J Food Sci Technol 1(2), 7-15.
  • Kosar, M., Küpeli, E., Malyer, H., Uylaser, V., Türkben, C., & Baser, K. H. C. (2007). Effect of brining on biological activity of leaves of Vitis vinifera L.(cv. Sultani Cekirdeksiz) from Turkey. J agric food chem 55(11), 4596-4603.
  • Lefsih, K., Giacomazza, D., Dahmoune, F., Mangione, M. R., Bulone, D., San Biagio, P. L., . . . Madani, K. (2017). Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization. Food chem, 221, 91-99. doi:http://dx.doi.org/10.1016/j.foodchem.2016.10.073
  • Li, H., Deng, Z., Wu, T., Liu, R., Loewen, S., & Tsao, R. (2012). Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food chem 130(4), 928-936.
  • Madhujith, T., & Shahidi, F. (2009). Antioxidant potential of barley as affected by alkaline hydrolysis and release of insoluble-bound phenolics. Food Chem, 117(4), 615-620. doi:http://dx.doi.org/10.1016/j.foodchem.2009.04.055
  • Mohan, M., Khanam, S., & Shivananda, B. (2013). Optimization of microwave assisted extraction of andrographolide from Andrographis paniculata and its comparison with refluxation extraction method. J Pharmacogn Phytochem 2(1), 342-348.
  • Mustapa, A. N., Martin, Á., Mato, R. B., & Cocero, M. J. (2015). Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind Crops Prod 74, 83-94.
  • Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O., & Khodir, M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food chem 187, 507-516.
  • Quanhong, L., & Caili, F. (2005). Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem 92(4), 701-706. doi:http://dx.doi.org/10.1016/j.foodchem.2004.08.042
  • Roselló-Soto, E., Koubaa, M., Moubarik, A., Lopes, R. P., Saraiva, J. A., Boussetta, N., . . . Barba, F. J. (2015). Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends Food Sci Technol 45(2), 296-310.
  • Salerno, L., Modica, M. N., Pittalà, V., Romeo, G., Siracusa, M. A., Di Giacomo, C., Acquaviva, R. (2014). Antioxidant activity and phenolic content of microwave-assisted Solanum melongena extracts. Sci World J 2014(2014), 6. Sharmila, G., Nidhi, B., & Muthukumaran, C. . (2013). Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder Ind Crops and Prod 44, 158-164.
  • Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Techno 17(6), 300-312.
  • Wu, J., Yu, D., Sun, H., Zhang, Y., Zhang, W., Meng, F., & Du, X. . (2015). Optimizing the extraction of anti-tumor alkaloids from the stem of Berberis amurensis by response surface methodology. Ind Crops and Prod, 69, 68-75.
  • Yan, M.-M., Liu, W., Fu, Y.-J., Zu, Y.-G., Chen, C.-Y., & Luo, M. (2010). Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food chem 119(4), 1663-1670.
Çukurova Tarım ve Gıda Bilimleri Dergisi-Cover
  • ISSN: 2636-7874
  • Başlangıç: 1973
  • Yayıncı: Çukurova Üniversitesi