Migrenli hastalarda başağrısı, korpus kallozum ve derin beyaz madde lezyonları arasındaki ilişki

Amaç: Çalışmanın amacı, beyaz cevher hiperin tensiteleri (BCH) ve korpuskallozum (KK) ölçümlerinin migren özellikleri ile ilişkisini incelemektir. Gereç ve Yöntem: Bu çalışma, 50 migren hastası ve control grubundaki 40 bireyi içeren, vaka-kontrol ve ileriye dönük bir çalışma olarak yapılmıştır. Başağrısının şiddeti ve sıklığı ile başağrısı ağrı özellikleri sorgulandı. Hastalığın etkileri migren özürlülük derecelendirme ölçeği (MIDAS) kullanılarak belirlendi. WMH lezyonları FAZEKAS skalasıiledeğerlendirildi. KK’un morfometrik ölçümleri yapıldı. Ağrı özellikleri ile ölçümler arasındaki ilişki incelendi. Bulgular: Yaş ortalaması 30,86±8,64 (18-51) yıl olan 50 migrenhastası (44 kadın, 6 erkek) vardı. Migren hastalarında çok noktalı BCH'lerin sıklığı control grubuna göre daha yüksekti. İki grup arasında ölçülen KK değerlerinde fark yoktu. Bulantı şikayetleri olan hastalarda BCH'ler daha yaygındı. Fonofobi ve görsel aura semptomları olan hastalarda ölçülen KK genu değerleri dahadüşüktü. Sonuç: Bu çalışma, migrenli hastalarda BCH oranının yüksek olduğunu ve ataklara bulantı eşlik ettiğinde bu oranın daha da yüksek olduğunu ortaya koymuştur. CC'nin ölçülen değerleri ile migren arasında herhangi bir ilişki bulunamadı.

Relationship between headache, corpus callosum, and deep white matter lesions in patients with migraine

Purpose: The aim of the study was to examine the relationship of white matter hyperintensities (WMHs) and measurements of corpus callosum (CC) with migraine characteristics. Materials and Methods: This study was conducted as a case-control and prospective study that included 50 migraine patients and 40 individuals in the control group. The severity and frequency of headaches and headache pain characteristics were questioned. The effects of the disease were determined using the migraine disability rating scale (MIDAS). WMH lesions were evaluated with the FAZEKAS scale. Morphometric measurements of CC were performed. The relationship between pain characteristics and measurements was examined. Results: There were 50 migraine patients (44 women, 6 men) with a mean age of 30,86±8,64 (18-51) years. The frequency of multi-point WMHs was higher in migraine patients compared to the control group. There were no differences in the measured values of CC between the two groups. WMHs were more common in patients with nausea complaints. Measured CC genu values were lower in patients with phonophobia and visual aura symptoms. Conclusion: This study has revealed that patients with migraines have a high rate of WMHs, and this rate is even higher when nausea accompanies attacks. No relationships were found between the measured values of CC and migraines.

___

  • 1. Stewart WF, Lipton RB, Celentano DD, Reed ML. Prevalence of migraine headache in the United States: relation to age, income, race, and other sociodemographic factors. JAMA. 1992;267:64-9.
  • 2. Sprenger T, Borsook D. Migraine changes the brain– neuroimaging imaging makes its mark. CurrOpin Neurol. 2012;25:252.
  • 3. Bashir A, Lipton RB, Ashina S, Ashina M. Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology. 2013;81:1260-8.
  • 4. Skorobogatykh K, Van Hoogstraten WS, Degan D, Prischepa A, Savitskaya A, Ileen BM et al. Functional connectivity studies in migraine: what have we learned? J. Headache Pain. 2019;20:1-10.
  • 5. Chen SP, Eikermann‐Haerter K. How imaging can help us better understand the migraine‐stroke connection. Headache. 2020;60:217-28.
  • 6. Palm-Meinders IH, Koppen H, Terwindt GM, Launer LJ, Konishi J, Moonen JM et al. Structural brain changes in migraine. JAMA. 2012;308:1889-96.
  • 7. Ashina S, Bentivegna E, Martelletti P, EikermannHaerter K. Structural and functional brain changes in migraine. PainTher. 2021;10:211-23.
  • 8. Lin J, Wang D, Lan L, Fan Y. Multiple factors involved in the pathogenesis of white matter lesions. BioMed Res Int. 2017;2017:9372050.
  • 9. Xie H, Zhang Q, Huo K, Liu R, Jian Z-J, Bian Y-T et al. Association of white matter hyperintensities with migraine features and prognosis. BMC Neurol. 2018;18:93.
  • 10. van der Knaap LJ, van der Ham IJ. How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res. 2011;223:211-21.
  • 11. Akin ME, AN ÇK. Differences in corpus callosum morphology between healthy adolescents and adolescents with migraine: a case control study. Turk J Med Sci. 2021;51:2346-50.
  • 12. Stewart WF, Lipton RB, Whyte J, Dowson A, Kolodner K, Liberman Ja et al. An international study to assess reliability of the Migraine Disability Assessment (MIDAS) score. Neurology. 1999;53:988.
  • 13. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR. 1987;149:351-6.
  • 14. Eikermann-Haerter K, Huang SY. white matter lesions in migraine. Am J Clin Pathol. 2021;191:1955- 62.
  • 15. Trauninger A, Leél-Őssy E, Kamson DO, Pótó L, Aradi M, Kövér F et al. Risk factors of migrainerelated brain white matter hyperintensities: an investigation of 186 patients. J Headache Pain. 2011;12:97-103.
  • 16. Zhang Q, Datta R, Detre JA, Cucchiara B. White matter lesion burden in migraine with aura may be associated with reduced cerebral blood flow. Cephalalgia. 2017;37:517-24.
  • 17. Negm M, Housseini AM, Abdelfatah M, Asran A. Relation between migraine pattern and white matter hyperintensities in brain magnetic resonance imaging. Egypt J Neurol Psychiatr Neurosurg. 2018;54:1-8.
  • 18. Le Pira F, Reggio E, Quattrocchi G, Sanfilippo C, Maci T, Cavallaro T et al. Executive dysfunctions in migraine with and without aura: what is the role of white matter lesions? Headache: 2014;54:125-30.
  • 19. Seneviratne U, Chong W, Billimoria P. Brain white matter hyperintensities in migraine: clinical and radiological correlates. Clin Neurol Neurosurg. 2013;115:1040-3.
  • 20. Swartz RH, Kern RZ. Migraine is associated with magnetic resonance imaging white matter abnormalities: a meta-analysis. Arch Neurol. 2004;61:1366-8.
  • 21. Hamedani AG, Rose KM, Peterlin BL, Mosley TH, Coker LH, Jack CR et al. Migraine and white matter hyperintensities: the ARIC MRI study. Neurology. 2013;81:1308-13.
  • 22. Gaist D, Garde E, Blaabjerg M, Nielsen HH, Krøigård T, Østergaard K et al. Migraine with aura and risk of silent brain infarcts and white matter hyperintensities: an MRI study. Brain. 2016;139:2015-23.
  • 23. Kruit MC, van Buchem MA, Hofman PA, Bakkers JT, Terwindt GM, Ferrari MD et al. Migraine as a risk factor for subclinical brain lesions. JAMA. 2004;291:427-34.
  • 24. Chong CD, Schwedt TJ. Migraine affects white-matter tract integrity: a diffusion-tensor imaging study. Cephalalgia. 2015;35:1162-71.
  • 25. Toghae M, Rahimian E, Abdollahi M, Shoar S, Naderan M. The prevalence of magnetic resonance imaging hyperintensity in migraine patients and its association with migraine headache characteristics and cardiovascular risk factors. Oman Med J. 2015;30:203.
  • 26. Gomez-Beldarrain M, Oroz I, Zapirain BG, Ruanova BF, Fernandez YG, Cabrera A et al. Right frontoinsular white matter tracts link cognitive reserve and pain in migraine patients. J Headache Pain. 2016;17:1- 12.
  • 27. Rościszewska-Żukowska I, Zając-Mnich M, Janik P. Characteristics and clinical correlates of white matter changes in brain magnetic resonance of migraine females. NeurolNeurochir Pol. 2018;52:695-703.
  • 28. Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375:938-48.
  • 29. Rossato G, Adami A, Thijs V, Cerini R, Pozzi-Mucelli R, Mazzucco S et al. Cerebral distribution of white matter lesions in migraine with aura patients. Cephalalgia. 2010;30:855-9.
  • 30. Demir BT, Bayram NA, Ayturk Z, Erdamar H, Seven P, Calp A et al. Structural changes in the cerebrum, cerebellum and corpus callosum in migraine patients. Clin Investig Med. 2016;39:21-6.