Hyaluronik asit ve gama radyasyonlu mineralize allogreftlerin sıçan tibial defektlerinin iyileşmesi üzerine etkileri

Amaç: Hyaluronik asidin ve mineralize allogreftin sıçan tibiasında oluşturulmuş defektlerde yeni kemik formasyonu ve kemik iyileşme skoru üzerine etkisinin değerlendirilmesi amaçlanmıştır.Gereç ve Yöntem: 52 adet Spraque-Dawley cinsi sıçan 4 gruba ayrılmıştır: mineralize kemik greft grubu, hyaluronik asit grubu, hyaluronik asit ile kombine olarak uygulanan mineralize kemik greft grubu ve boş defektlere sahip kontrol grubu. Hayvanlar postoperatif 7. ve 21. günlerde sakrifiye edilmiştir. İnflamasyon, nekroz, fibrosis, yeni kemik oluşumu ve kemik iyileşme skoru histopatolojik olarak değerlendirilmiştir.Bulgular: Yeni kemik oluşumu kontrol grubunda deney grubuna göre anlamlı oranda daha yüksek bulunmuştur. Ayrıca yalnızca hyaluronik asit ve yalnızca greft gruplarına kıyasla, kontrol grubunda iyileşme skoru daha yüksek bulunmuştur. Greft ve hyaluronik asit grupları kıyaslandığında, 7. gündeki nekroz kontrol grubunda anlamlı oranda düşükken, 21. günde gruplar arasında anlamlı bir farklılık bulunmamıştır. 7. ve 21. günlerdeki inflamasyon ve fibrozis değişkenlerinin oranları gruplar arasında anlamlı bir değişiklik yaratmamıştır.Sonuç: Hyaluronik asit tek başına veya mineralize kemik allogrefti ile birlikte uygulandığında, sıçan tibiasında oluşturulmuş kritik boyutta olmayan defektlerde kemik rejenerasyonununda yeterli katkıyı sağlamamıştır.
Anahtar Kelimeler:

Hiyalüronik asid

Effects of hyaluronic acid and gamma-radiated mineralized allografts on the healing of rat tibial defects

Purpose: This study aimed to evaluate the effects of hyaluronic acid (HyA) and gamma-radiated mineralized allografts (Gr-MAs) on the healing of bone defects in rat tibiae. Materials and Methods: Fifty-two male Sprague Dawley rats were randomly allocated to four groups: Gr-MA, HyA, Gr-MA combined with HyA (Gr-MA + HyA), and controls with empty defects. The animals were sacrificed on the 7th and 21st postoperative days. The inflammation, necrosis, fibrosis, new bone formation, and bone healing scores were evaluated on the basis of the histopathological findings. Results: The amount of new bone formation was found to be significantly greater in the control group than in the experimental groups. In addition, the healing scores were statistically higher in the control and the Gr-MA + HyA groups. Comparisons of the control, graft, and HyA groups indicated that the control group exhibited significantly less necrosis on the 7th day; however, on the 21st day, there were no statistically significant differences among the groups. There were no statistically significant differences among the groups in terms of the inflammation and fibrosis levels on the 7th or 21st days.Conclusion: Within the limitations of this study, the application of HyA alone and the addition of HyA to Gr-MA did not improve bone regeneration in rat tibial defects.

___

  • 1. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016;98-B:6-9.
  • 2. Blokhuis TJ, Buma P, Verdonschot N, Gotthardt M, Hendriks T. BMP-7 stimulates early diaphyseal fracture healing in estrogen deficient rats. J Orthop Res. 2012;30:720-2.
  • 3. Liu A, Li Y, Wang Y, Liu L, Shi H, Qiu Y. Exogenous parathyroid hormone-related peptide promotes fracture healing in Lepr(-/-) mice. Calcif Tissue Int. 2015;97:581-91.
  • 4. Hoexter D. Bone regeneration graft materials. J Oral Implantol. 2002;28:290-4.
  • 5. Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018;62:152-61.
  • 6. Kattz, J. The effects of various cleaning and sterilization processes on allograft bone incorporation. J Long Term Eff Med Implants. 2010;20:271-6.
  • 7. Trajkovski B, Jaunich M, Müller WD, Beuer F, Zafiropoulos GG, Houshmand A. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes. Materials (Basel). 2018;30:11:215.
  • 8. Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010;31: 6772-81.
  • 9. Sindel A, Dereci Ö, Toru HS, Tozoğlu S. Histomorphometric comparison of bone regeneration in critical-sized bone defects using demineralized bone matrix, platelet-rich fibrin, and hyaluronic acid as bone substitutes. J Craniofac Surg. 2017;28:1865-8.
  • 10. Babo PS, Reis RL, Gomes ME. Production and characterization of hyaluronic acid microparticles fort he controlled delivery of growth factors using a spray/dehydration method. J Biomater Appl. 2016;31:693-707.
  • 11. Boyce DE, Thomas A, Hart J, Moore K, Harding K. Hyaluronic acid induces tumour necrosis factor-alpha production by human macrophages in vitro. Br J Plast Surg. 1997;50:362-8.
  • 12. Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone. 1995;16:9-15.
  • 13. Karayürek F, Kadiroğlu ET, Nergiz Y, Coşkun Akçay N, Tunik S, Ersöz Kanay B et al. Combining platelet rich fibrin with different bone graft materials: an experimental study on the histopathological and immunohistochemical aspects of bone healing. J Craniomaxillofac Surg. 2019;47:815-25.
  • 14. Allen HL, Wase A, Bear WT. Indomethacin and aspirin: effect of nonsteroidal antiinflammatory agents on the rate of fracture repair in the rat. Acta Orthop Scand. 1980;51:595-600.
  • 15. Minichetti JC, D'Amore JC, Hong AY, Cleveland DB. Human histologic analysis of mineralized bone allograft (Puros) placement before implant surgery. J Oral Implantol. 2004;30:74-82.
  • 16. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G,Williams DF. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials. 1998;19:2101-27.
  • 17. Mansjur KQ, Kuroda S, Izawa T, Maeda Y, Sato M, Watanabe K et al. The effectiveness of human parathyroid hormone and low-intensity pulsed ultrasound on the fracture healing in osteoporotic bones. Ann Biomed Eng. 2016;44:2480-8.
  • 18. Akyildiz S, Soluk-Tekkesin M, Keskin-Yalcin B, Unsal G, Ozel Yildiz S, Ozcan I et al. Acceleration of fracture healing in experimental model: platelet-rich fibrin or hyaluronic acid? J Craniofac Surg. 2018;29:1794-8.
  • 19. Collins JR, Jiménez E, Martínez C, Polanco RT, Hirata R, Mousa R et al. Clinical and histological evaluation of socket grafting using different types of bone substitute in adult patients. Implant Dent. 2014;23:489-95.
  • 20. Zhang Q, Jing D, Zhang Y, Miron RJ. Histomorphometric study of new bone formation comparing defect healing with three bone grafting materials: the effect of osteoporosis on graft consolidation. Int J Oral Maxillofac Implants. 2018;33:645-52.
  • 21. Necas J, Bartosikova, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): A review. Vet Med. 2008;53:397-411.
  • 22. Hellström S, Laurent C. Hyaluronan and healing of tympanic membran perforations. An experimental study. Acta Otolaryngol Suppl. 1987;442:54-61.
  • 23. Saltı NI, Tuel RJ, Mass DP. Effect of hyaluronic acid on rabbit profundus flexor tendon healing in vitro. J Surg Res. 1993;55:411-5.
  • 24. Sonoda M, Harwood FL, Amiel ME, Moriya H, Temple M, Chang DG et al. The effect of hyaluronan on tissue healing after meniscus injury and repair in a rabbit model. Am J Sports Med. 2000;28:90-7.
  • 25. Huang H, Feng J, Wismeijer D, Wu G, Hunziker EB. Hyaluronic acid promotes the osteogenesis of BMP-2 in an absorbable collagen sponge. Polymers (Basel). 2017;4:9:339.
  • 26. Mermerkaya MU, Doral MN, Karaaslan F, Huri G, Karacavuş S, Kaymaz B et al. Scintigraphic evaluation of the osteoblastic activity of rabbit tibial defects after HYAFF 11 membrane application. J Orthop Surg Res. 2016;11:57.
  • 27. Moseley R, Leaver M, Walker M, Waddington RJ, Parsons D, Chen WY et al. Comparison of the antioxidant properties of HYAFF-11p75, AQUACEL and hyaluronan towards reactive oxygen species in vitro. Biomaterials. 2002;23:2255-64.
  • 28. Mendes Brazão MA, de Brito Bezerra B, Casati MZ, Sallum EA, Sallum AW. Hyaluronan does not improve bone healing in critical size calvarial defects in rats-a radiographic evaluation. Braz J Oral Sci. 2010;9:124-7.
  • 29. de Brito Bezerra B, Mendes Brazão MA, de Campos ML, Casati MZ, Sallum EA, Sallum AW. Assocation of hyaluronic acid with a collagen scaffold may improve bone healing in critical-size bone defects. Clin Oral Implants Res. 2012;23:938-42.
  • 30. Casale M, Moffa A, Vella P, Sabatino L, Capuano F, Salvinelli B et al. Hyaluronic acid: Perspectives in dentistry. A systematic review. Int J Immunopathol Pharmacol. 2016;29:572-82.
  • 31. Arpağ OF, Damlar I, Altan A, Tatli U, Günay A. To what extent does hyaluronic acid affect healing of xenografts? A histomorphometric study in a rabbit model. J Appl Oral Sci. 2018;26:e20170004.
  • 32. Koca C, Komerik N, Ozmen O. Comparison of efficiency of hyaluronic acid and/or bone grafts in healing of bone defects. Niger J Clin Pract. 2019;22:754-62.
  • 33. Diker N, Gulsever S, Koroglu T, Yilmaz Akcay E, Oguz Y. Effects of hyaluronic acid and hydroxyapatite/beta-tricalcium phosphate in combination on bone regeneration of a critical-size defect in an experimental model. J Craniofac Surg. 2018;29:1087-93.
  • 34. Agrali OB, Yildirim S, Ozener HO, Köse KN, Ozbeyli D, Soluk-Tekkesin M et al. Evaluation of the effectiveness of esterified hyaluronic acid fibers on bone regeneration in rat calvarial defects. Biomed Res Int. 2018;28:3874131.
  • 35. Aslan M, Simsek G, Dayi E. The effect of hyaluronic acid-supplemented bone graft in bone healing: Experimental study in rabbits. J Biomater Appl. 2006;20:209-20.
Cukurova Medical Journal-Cover
  • ISSN: 2602-3032
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1976
  • Yayıncı: Çukurova Üniversitesi Tıp Fakültesi