Türkiye’deki Fırtınalı Günlerin Yıllararası Değişkenliği

Öz The effects of climate variability are seen in many areas of the globe. In addition to the changes experienced in climates for many years, the variability in climate elements due to the effects of climate change in recent years is critical. In this study, spatial and temporal changes of the year to year experienced variability and trends in storm records in Turkey were examined. Also, atmospheric teleconnections that control storm frequency were examined within the scope of the study. According to the results of the study, significant reductions in recent years in the frequency of storm events are being experienced across Turkey. Stormy days show statistically significant upward trends in the interior and eastern half of Turkey. All coastal regions of Turkey, especially the western coasts and terrestrial areas in the eastern parts of the Mediterranean region experienced statistically significant downward trends. In Turkey, the NAO’s activity on the number of stormy days is quite evident in winter. NCP and frequency of storms is characterized by significant positive correlations in eastern Turkey. When evaluating the relationships between Turkey’s storm frequency and Atmospheric oscillations, one can say that NAO and AO are atmospheric oscillation indices that best explain storm frequency across the country.

Interannual Variability of Stormy Day Over Turkey

___

  • Alexandersson, H., Schmith, T., Iden, K., & Tuomenvirta, H. (1998).Long-term variations of the storm climate over NW Europe. Glob Atmos Ocean Syst, 6, 97–120.
  • Alpert, P., Osetinsky, I., Ziv, B., & Shafir, H. (2004). Semi-objective classification for daily synoptic systems: application to the Eastern Mediterranean climate change, International Journal of Climatolo-gy, 24, 1001–1011, doi:10.1002/joc.1036.
  • Bacanlı, Ü., & Tuğrul, A. (2016). Baraj göllerinin iklimsel etkisi ve Vali Recep Yazıcıoğlu Gökpınar baraj gölü örneği. Pamukkale Üniversi-tesi Mühendislik Bilimleri Dergisi, 22(3), 154–159.
  • Bakowska, Z. B. (2003). Long-term variability of thunderstorm occur-rence in Poland in the 20th century. Atmospheric Research, 67(68), 35–52.
  • Baltacı, H., Akkoyunlu, B. O., ve Tayanç, M. (2017). Türkiye iklim uç değerlerine uzakbağlantı paternlerinin etkisi. VII. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, Hava Kirlenmesi Araştırmaları ve Denetimi Türk Milli Komitesi, Akdeniz Üniversitesi Mühendislik Fakültesi Çevre Mühendisliği Bölümü, Antalya.
  • Barring, L., & Von Storch, H. (2004). Scandinavian storminess since about 1800. Geophysical Research Letters, 31, L20202, doi: 10.1209/2004GL020441.
  • Bulut, H., Yeşilata, B., & Yeşilnacar, İ. (2008). Trend analysis for exam-ining the interaction between the Atatürk dam lake and its local cli-mate. International Journal of Natural and Engineering Sciences,1(3), 115–123.
  • Çelik, F. D., & Cengiz, E. (2014). Wind speed trends over Turkey from 1975 to 2006. International Journal of Climatology, 34, 1913–1927.
  • Donat, M.G., Leckebusch, G.C., Pinto, J.G. & Ulbrich, U. (2010). Ex-amination of windstorms over central europe with respect to circu-lation weather types and NAO phases. International Journal of Cli-matology, 30(9), 1289–1300.
  • Galanaki, E., Lagouvardos, K., Kotroni, V., Flaounas, E., & Argiriou, A. (2018). Thunderstorm climatology in the Mediterranean using cloud-to-ground lightning observations. Atmospheric Research, 207, 136–144.
  • Ghasemi, A. R., & Khalili, D. (2008). The effect of the North Sea- Cas-pian Pattern (NCP) on winter temperatures in Iran. Theoretical and Applied Climatology, 92, 59–74.
  • Gündüz, M., & Ozsoy, E. (2005). Effects of the North Sea Caspian pat-tern on surface fluxes of Euro-Asian-Mediterranean seas, Geophys-ical Research Letters, 32, L21701. doi:10.1029/2005GL024315.
  • Hurrel, J.W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. American Association for the Advancement of Science, 269(5224), 676–679.
  • Hurrel, J. W., Kushnir, Y., Ottersan, G., & Visbeck, M. (2003). An over-view of the North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, (s.1-36), Washington, DC.
  • Hurrel, J. W., Kushnir, Y., & Visbeck, M. (2001). The North Atlantic oscillation. American Association for the Advancement of Science, 291(5504), 603–605.
  • IPCC. (2007). The physical science basis: summary for policymakers - contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC), IPCC Secretariat, WMO, Geneva.
  • Kendall, M. G. (1975). Rank correlation methods. Charles Griffin: Lon-don.
  • Kurtuluş, Y. F., & Acar, Z. (2019). Spatial and temporal variability of the stormy day in Turkey. İstanbul International Geography Con-gress, (s.1182-1190). İstanbul.
  • Kutiel, H., & Benaroch, Y. (2002). North Sea-Caspian pattern (NCP)-an upper-level atmospheric teleconnection affecting the Eastern Medi-terranean: Identification and Definition. Theoretical and Applied Climatology, 71, 17–28.
  • Kutiel, H., Maheras, P., Türkeş, M., & Paz, S. (2002). North Sea-Caspi-an pattern (NCP)-an upper-level atmospheric teleconnection affect-ing the Eastern Mediterranean-implications on the regional climate. Theoretical and Applied Climatology, 72, 173–192.
  • Kum, G. (2016). The influence of dams on surrounding climate: the case of Keban Dam. Gaziantep University Journal of Social Scienc-es, 15(1), 193–204.
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.
  • Maheras, P., Flocas, H., Patrikas, I., & Anagnostopoulou, C. (2001). A 40-year objective climatology of surface cyclones in the Mediterra-nean region: spatial and temporal distribution, International Jour-nal of Climatology, 21(1), 109–130. doi:10.1002/joc.599, 2001.
  • Marcos, M., Jordá, G., Gomis, D., & Pérez, B. (2011). Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob Planet Change, 77(3-4), 116–128.
  • Matulla, C., Schoner, W., Alexandersson, H., von Storch, H., & Wang, X. L. (2008). European storminess: late 19th century to present. Cli-mate Dynamics, 32, 125–130.
  • Nissen, K. M., Leckebusch, G. C., Pinto, J. G., Renggli D., Ulbrich, S., & Ulbrich, U. (2010). Cyclones causing windstorms in the Mediter-ranean: characteristics, trends and links to largescale patterns. Nat-ural Hazards and Earth System Science, 10(7), 1379–1391. doi: https://doi.org/10.5194/nhess1013792010
  • Qu, B., Gabric, J. A., Zhu, J., Lin, D., Qian, F., & Zhao, M. (2012). Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability. Water Science and Engineering, 5(3), 304–315.
  • Raible, C.C., Saaroni, H., Ziv, B., & Wild, M. (2010). Winter cyclonic activity over the Mediterranean Basin under future climate based on the ECHAM5 GCM, Climate Dynamics, 35, 473–488. doi:10.1007/ s00382-009-0678-5
  • SANHO, (2009). South African Tide Tables. Tokai: Naval Hydrogra-pher, South African Navy Publishing Unit. ISBN 97809584817-4-8.
  • Smits, A. K., Tank, A. M. G., & Onnen, G. P. K. (2005). Trends in storminess over the Netherlands, 1962-2002. International Journal of Climatology, 25, 1331–1334.
  • Stroe, A. V., & Tatui, F. (2005). The influence of North Atlantic Oscilla-tion on Romanian Black Sea coast wind regime. Analele Univ Buc Seria Geografie, 54, 17–25.
  • Stroe, A. V., & Tatui, F. (2011).North-Atlantic Oscillation signature on coastal dynamics and climate variability of the Romanian Black Sea coast. Carpathian Journal of Earth and Environmental Sciences, 6(1), 309–316.
  • Türkeş, M. (1996). Spatial and temporal pattern analyses of rainfall variations in Turkey. International Journal of Climatology, 16, 1057-1076.
  • Türkeş, M., & Erlat, E. (2005). Climatological responses of winter pre-cipitation in Turkey to variability of the North Atlantic Oscillation during the period 1930-2001. Theoretical and Applied Climatology, 81, 45–69.
  • Türkeş, M., & Erlat, E. (2008). Influence of the Arctic Oscillation on variability of winter mean temperatures in Turkey. Theoretical and Applied Climatology, 92, 75–85.
  • Türkeş, M., & Şahin, S. (2018). Türkiye’nin fırtına afeti etkilenebilirliği ve risk çözümlemesi. Kebikeç, 46, 219–246.
  • Trigo, I. F. (2006). Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalysis. Climate Dynamics, 26, 127–143, doi: 10. 1007/s00382-005-0065-9
  • Unal, Y. S., Deniz, A., Toros, H., & Incecik, S. (2010). Temporal and spatial patterns of precipitation variability for annual, wet, and dry seasons in Turkey. International Journal of Climatology, 32(3), 392–405. doi: 10.1002/joc.2274
  • Valchev, N. N., Trifonova, E. V., & Andreeva, K. N. (2012). Past and recent trends in the Western Black Sea storminess. Natural Hazards Earth Systems, 12(4), 961–977.
  • Xoplaki, E. (2002). Climate variability over the Mediterranean. PhD dissertation. University of Bern, Switzerland.
  • World Meteorological Organization. (2016). Manual on codes, interna-tional codes, Vol I.1 Annex II to the WMO technical regulations part a- alphanumeric codes, WMO No. 306, ISBN 978-92-63-10306-2.
  • World Meteorological Organization. (2013). The global climate 2001– 2010 a decade of climate extremes, WMO-No. 1119, ISBN 978-92-63-11119-7.