Çok Kriterli Karar Verme Yöntemleri ile Kent İçi Raylı Sistem Koridor Planlaması

İstanbul’da önemsenmesi ve çözülmesi gereken başlıca konulardan birisi de ulaşım sorunudur. Gelecek yıllarda inşa edilecek yeni konut alanları ve açılacak yeni istihdam sahaları, bu problemin daha da büyümesine neden olacaktır. Hızla artan yolculuk talebinin karşılanmasında, karayolu odaklı çözümlerden ziyade yüksek kapasiteli raylı toplu taşıma sistemlerinden yararlanılması bir zorunluluk haline gelmiştir. İstanbul Büyükşehir Belediyesi tarafından planlanan yatırımlarda en büyük pay ulaşıma, ulaşımın içinde en büyük pay ise raylı sistemlere aittir. 2004 yılı öncesinde 45,1 km iken şu anda 145,5 km olan raylı sistem ağının 2019 yılında 454,2 km’ye, 2024 yılında 603,7 km’ye, 2024 sonrasında ise toplamda 974,05 km’ye çıkarılması planlanmaktadır. Milyarlarca dolarlık bu yatırımların hem İstanbul’a hem de Türkiye’ye en yüksek faydayı sağlayacak şekilde hayata geçirilmeleri gerekmektedir. Bu çalışmanın amacı; bu yatırımların fiziki ve beşeri coğrafya faktörleri de göz önünde bulundurularak en doğru şekilde yönlendirilmesine katkıda bulunmaktır. Çalışmada, raylı sistem güzergâh tasarımında kullanılan geleneksel yöntemlere alternatif olarak Coğrafi Bilgi Teknolojileri tabanlı yeni bir tasarım modeli geliştirilmiştir. Çok Kriterli Karar Verme yöntemlerinin kullanıldığı bu model sayesinde, tasarım sürecine etki eden tüm faktörler bir arada değerlendirilerek hem karar vericilere hem de teknik personele yönelik bir karar destek sistemi ortaya çıkarılmıştır. Çalışmanın sonucunda, önerilen tasarım modeli örnek çalışma alanı olarak seçilen İstanbul şehrine başarıyla uygulanmış ve raylı sistem yatırımları için en uygun bölgeler tespit edilmiştir.

Urban Railway Corridor Planning Based on Multi Criteria Decision Making Techniques

The issue of traffic congestion in İstanbul is one of the most important problems that must be solved in the near future. Istanbul

___

  • AKAD, M., & GEDİZLİOĞLU, E. (2007). Toplu Taşıma Türü Seçiminde Simülasyon Destekli Analitik Hiyerarşi Yaklaşımı. İTÜ Üniversitesi Mühendislik Dergisi, 88‐98.
  • BERESFORD, A. R., & BACON, J. (2006). Intelligent Transportation Systems. IEEE Pervasive Computing, 4(5), 63‐7.
  • BLACK, J. A., PAEZ, A., & SUTHANAYA, P. A. (2002). Sustainable Urban Transportation: Performance Indicators and Some Analytical Approaches. Journal of Urban Planning & Development, 4(128).
  • BLAINEY, S. P., & PRESTON, J. M. (2013). A GIS Based Appraisal Framework for New Local Railway Stations and Services. Transport Policy (25), 41‐51.
  • BRUNNER, I., KIM, K., & YAMASHITA, E. (2011). Analytic Hierarchy Process and Geographic Information Systems to Identify Optimal Transit Alignments. Transportation Research Record: Journal of the Transportation Research Board, 1(2215), 59‐66.
  • CHEN, S., TAN, J., CLARAMUNT, C., & RAY, C. (2011). Multi‐Scale and Multi‐Modal GIS‐T Data Model. Journal of Transport Geography, 1(19), 147‐161.
  • DJENALIEV, A. (2007). Multicriteria decision making and GIS for railroad planning in Kyrgyzstan. School of Architecture and the Built Environment Royal Institute of Technology, Master’s of Science Thesis in Geoinformatics, Stockholm, Sweden.
  • DLH (T.C. Ulaştırma, Denizcilik ve Haberleşme Bakanlığı). (2014). Raylı Sistem Tasarım Kriterleri. www.dlh.gov.tr Erişim Tarihi: 08.05.2014
  • ESRI (Environmental Systems Research Institute). (2016). Weighted Overlay. http://desktop.arcgis.com/en/arcmap/10.3/ tools/spatial‐analyst‐toolbox/weighted‐overlay.htm Erişim Tarihi: 07.10.2016
  • FARKAS, A. (2009). Route/Site Selection of Urban Transportation Facilities: An Integrated GIS/MCDM Approach. Proceedings ‐ 7th International Conference on Management, Enterprise and Benchmarking (MEB 2009), (pp. 169‐184). Budapest, Hungary. GOODCHILD, M. F. (2000). GIS and Transportation: Status and Challenges. GeoInformatica, 2(4), 127‐139.
  • GOVERNMENT OF WESTERN AUSTRALIA. (2003). Design and Planning Guidelines for Public Transport Infrastructure. Bus Route Planning and Transit Streets. Australia: Public Transport Authority.
  • HARMET, P., & SAGAMI, L. (2010). Using GIS in a Large‐Scale Transportation Planning Study. 2010 Esri International User Conference. San Diego, CA: ESRI.
  • HASSE, J. (2007). Evaluating Alternate Commuter Rail Corridors in Southern New Jersey. The Association of American Geographers 2007 Annual Meeting. San Francisco, California: Association of American Geographers (AAG).
  • HWANG, D., CHO, S.‐K., CHOI, Y.‐S., & YU, C.‐H. (2006). Applications of GIS for the Public Mass Transit Planning. ESRI European User Conference. Atina, Yunanistan: ESRI.
  • İBB (İstanbul Büyükşehir Belediyesi). (2011). İUAP‐İstanbul Metropoliten Alanı Kentsel Ulaşım Ana Planı Raporu. İstanbul.
  • İBB (İstanbul Büyükşehir Belediyesi). (2015). İBB 2016 Yatırım Programı.www.ibb.istanbul/tr/ButceYatirim/YatirimProgrami/ Pages/2016.aspx Erişim Tarihi: 22.09.2016
  • İBB (İstanbul Büyükşehir Belediyesi). (2016). Raylı Sistem Projeleri.www.ibb.istanbul/tr/kurumsal/Birimler/RayliSistemler DB/PublishingImages/rayli_sistemler_1.pdf Erişim Tarihi: 10.10.2016
  • İETT (İstanbul Elektrik, Tramvay ve Tünel İşletmeleri). (2015). İstanbul`da Toplu Ulaşım. www.iett.istanbul/tr/main/pages/ istanbulda‐toplu‐ulasim/95 Erişim Tarihi: 18.09.2016
  • İSKİ (İstanbul Su ve Kanalizasyon İdaresi). (2003). İçmesuyu Havzaları Koruma ve Kontrol Yönetmeliği. İstanbul.
  • JEANSONNE, G. B., & KAPAVIK, B. D. (2003). Case Study: Site Selection of Multibillion Dollar Multimodal Transportation Center. Esri International User Conference (s. San Diego, CA). ESRI.
  • JHA, M. K., SCHONFELD, P., & SAMANTA, S. (2007). Optimizing Rail Transit Routes with Genetic Algorithms and Geographic Information System. Journal of Urban Planning & Development, 3(133), 161‐171.
  • LOO, B. P., CHEN, C., & CHAN, E. T. (2010). Rail‐based Transit‐ Oriented Development: Lessons from New York City and Hong Kong. Landscape and Urban Planning, 3(97), 202‐212.
  • MALCZEWSKI, J. (1999). GIS and Multicriteria Decision Analysis. New York: John Wiley & Sons Inc.
  • MARTIN, R., & GREENWOOD, C. (2012). High Speed Rail Alignment Generation and Optimization using GIS. San Diego, CA: ESRI.
  • MOHAJERI, N., & AMIN, G. R. (2010). Railway station site selection using analytical hierarchy process and data envelopment analysis. Computers & Industrial Engineering, 1(59), 107‐114.
  • PARSONS, T., TODA, S., STEIN, R.S., BARKA, A. and DIETERICH, J.H. (2000). Heightened odds of large earthhquakes near İstanbul: An interaction‐based probability calculation, Science, 288, 661‐665.
  • RATNER, K. A. (2000). Relating U.S. Urban Population, Employment, and Congestion to U.S. Rail Transit Development and Success. AAG Annual Meeting, 2000 (p. 597). Pittsburgh, Pennsylvania: Association of American Geographers (AAG).
  • SAATÇİOĞLU, C., & YAŞARLAR, Y. (2012). Kentiçi Ulaşımda Toplu Taşımacılık Sistemleri: İstanbul Örneği. Kafkas Üniversitesi, İktisadi Ve İdari Bilimler Fakültesi Dergisi, 3(3).
  • SHAW, S.‐L., & XIN, X. (2003). GIS and Transportation: Status and Challenges. Journal of Transport Geography, 2(11), 103‐115.
  • SAMANTA, S. (2008). Models and algorithms for a rail transit line alignment using GIS and genetic algorithm. Morgan State University, Maryland, USA.
  • SENIOR, M. L. (2009). Impacts on travel behaviour of Greater Manchester’s light rail investment (Metrolink Phase 1): evidence from household surveys and Census data. Journal of Transport Geography, 3(17), 187‐197.
  • SMITH, A. C., & DINAN, M. (2003). Developing Transportation Models Utilizing Geographic Information Systems. Abstracts: 2003 URISA. Atlanta, Georgia.
  • TAYAL, T. (2002). Optimization of Network Alignment for Light Rail Transit: Phoenix, Arizona. Esri International User Conference. San Diego, CA: ESRI.
  • TREPAINER, M., CHAPLEAU, R., & MORENCY, C. (2008). Tools and Methods for a Transportation Household Survey. URISA Journal, 1(20), 35‐43.
  • TÜİK (Türkiye İstatistik Kurumu). (2016). Temel İstatistikler. www.tuik.gov.tr/UstMenu.do?metod=temelist Erişim Tarihi: 13.09.2016
  • TÜMERTEKİN, E. (1997). İstanbul İnsan ve Mekân. İstanbul: Tarih Vakfı Yurt Yayınları.
  • VERMA, A., & DHINGRA, S. L. (2005). Optimal Urban Rail Transit Corridor Identification within Integrated Framework Using Geographical Information System. Journal of Urban Planning & Development, 2(131), 98‐111.
  • YAO, X. (2007). Where Are Public Transit Needed: Examining Potential Demand for Public Transit for Commuting Trips. Computers, Environment & Urban Systems, 5(31), 535‐550.
  • ZHONGZHEN, Y., & HAYASHI, Y. (2002). GIS‐based analysis of railway's origin/destination path‐selecting behavior. Computer‐ Aided Civil and Infrastructure Engineering, 3(17).