Marmara Denizi Akarsu Havzalarının Morfometrik Analizi

Latince Şekil Bilimi anlamına gelen morfometrinin jeomorfoloji uygulamalarında kullanılan alt dalına jeomorfometri denmektedir. Jeomorfometri akarsu havzalarının sediman ve taşkın üretme potansiyellerini ortaya koyma ve yapının havza gelişimi üzerindeki etkisini gözlemleme konusunda kullanılan bir araçtır. Ülkemizde akarsu jeomorfolojisi çalışmaları genellikle nitel bilgi üzerine kuruludur. Az sayıdaki akarsu jeomorfometrisi çalışmaları ise tek bir havzayı veya birkaç alt havzayı kapsayan çalışmalardır. Bu durum ülkemiz akarsu havzaları hakkında genel morfometrik bilgilerin kısıtlı olmasına neden olmaktadır. Çalışma, ülkemizdeki bölgesel morfometri çalışmalarına başlangıç niteliğinde olup Marmara Denizi akarsu havzalarının morfometrik envanterini ortaya koyma amacını taşımaktadır. Çalışmada 10 metre çözünürlüklü SYM altlık olarak kullanılarak Marmara Denizi akarsu havzaları belirlenmiş, belirlenen havzalarda çatallanma oranı (Rb), yüzeysel akış uzunluğu (lo), tekstür oranı (T), drenaj yoğunluğu (Dd), akarsu sıklığı (Fs), Gravelius indeksi (Kg), havza rölyefi (Bh), engebelilik değeri (Rn), hipsometrik eğri ve hipsometrik integral (Hi) hesaplanmıştır. Çalışma sonucunda Marmara Denizi’nin kuzeyinde yer alan havzaların güney havzalarına kıyasla daha kısa boylu, uzunlamasına, düşük drenaj yoğunluğuna ve yüksek hipsometrik integral değerine sahip, tektonik olarak daha genç havzalar olduğu ortaya konmuştur.

Morphometric Analysis of the Marmara Sea River Basins

Geomorphometry, the science of land-surface analysis, is widely used in geomorphology studies to understand the sediment- and flood-producing potentials of river basins. In Turkey, fluvial geomorphology studies are generally based on qualitative information, and there have been a few geomorphometry studies regarding a single river basin or several sub-basins. In general, however, there is limited morphometric information about river basins in Turkey. This study represents the first regional geomorphometry study in Turkey, and our objective is to understand the morphometric characteristics of the Marmara Sea river basins. For this purpose, we divided the Marmara Sea basin into 632 sub-basins and identified morphometric parameters for analysis. Then, we determined the bifurcation ratio (Rb), length of overland flow (lo), drainage density (Dd), texture ratio (T), stream frequency (FS), Gravelius index (Kg), basin relief (BH), ruggedness number (Rn), hypsometric curve (Hc), and hypsometric integral (Hi) of the basins. Based on topographic maps, we produced a 10-m resolution digital elevation model with whichto define the parameters. Our study results reveal that basins located north of the Marmara Sea are tectonically younger, shallower, and longer in length, with lower drainage densities and higher hypsometric integral values than the southern basins.

Kaynakça

Aadil Hamid, R. A. H. (2013). Application of morphometric analysis for geo-hydrological studies using geo-spatial technology a case study of vishav drainage basin. Hydrology: Current Research, 4(3), 1–12. http://dx.doi.org/10.4172/2157-7587.1000157

Abdalla, F., Shamy, I., Bamousa, A. O., Mansour, A., Mohamed, A., & Tahoon, M. (2014). Flash floods and groundwater recharge potentials in arid land alluvial basins, Southern Red Sea Coast, Egypt. International Journal of Geosciences, 5, 971–982.

Abdel-Lattif, A., & Sherief, Y. (2010). Morphometric analysis and flash floods of Wadi Sudr and Wadi Wardan, Gulf of Suez, Egypt: Using digital elevation model. Arabian Journal of Geosciences, 5(2), 1–15. http://dx.doi.org/10.1007/s12517-010-0156-8

Ahmed, S. A., Chandrashekarappa, K. N., Raj, S. K., Nischitha, V., & Kavitha, G. (2010) Evaluation of morphometric parameters derived from ASTER and SRTM DEM a study on Bandihole sub-watershed basin in Karnataka. Journal of the Indian Society of Remote Sensing, 38(2), 227–238. http://dx.doi.org/10.1007/s12524-010-0029-3

Altaf, S., Meraj, G., & Romshoo, S. A. (2014). Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment, 186(12), 8391–8412. http://dx.doi. org/10.1007/s10661-014-4012-2

Arnous, M. O., Aboulela, H. A., & Green, D. R. (2011). Geoenvironmental hazards assessment of the north western Gulf of Suez, Egypt. Journal of Coastal Conservation, 15(1), 37–50. http:// dx.doi.org/10.1007/s11852-010-0118-z

Ashmawy, M., El-Wahed, M. A., Kamh, S. V., & Azim, F. A. (2014, January 14–16). Drainage Morphometry ad its Influence on Runoff of El-Kouf Watershed, NE , Libya - A Remote Sensing and GIS Approach. Paper presented 2nd Scientific Conference for Environment and Sustainable Development in Arid and Semi-Arid Regions, Ajdabiya, Libya.

Babu, K. J., Sreekumar, S., & Aslam, A. (2014). Implication of drainage basin parameters of a tropical river basin of South India. Applied Water Science, 6(1), 67–75. http://dx.doi.org/10.1007/s13201-014- 0212-8

Bahrami, S. (2013). Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics. Tectonophysics, 608, 914– 928.

Bagyaraj, M., Gurugnanam, B., & Nagar, A. (2011). Morphometry studies, soil characteristics, erosion phenomena and landform processes using remote sensing and GIS for Kodaikanal Hills, a global biodiversity. Research Journal of Environmental and Earth Sciences, 3(3), 221–233.

Baumgardner, R. (1987). Morphometric studies of subhumid and semiarid drainage basin, Texas Panhandle and northeastern New Mexico. Austin: Bureau of Economic Geology, University of Texas at Austin.

Blais, J. M., & Kalff, J. (1995). The influence of lake morphometry on sediment focusing. Limnology and Oceanography, 40(3), 582–588. http://dx.doi.org/10.4319/lo.1995.40.3.0582

Bloesch, J. (1994). A review of methods used to measure sediment resuspension. Hydrobiologia, 284, 13–18. http://dx.doi.org/10.1007/ BF00005728

Bloesch, J. (1995). Mechanisms, measurement and importance of sediment resuspension in lakes. Marine and Freshwater Research, 46(1), 295–304.

Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531–539. http://dx.doi.org/10.1007/BF02990738

Chorley, R. J. (1957). Climate And Morphometry. The Journal Of Geology, 65(6), 627–638.

Doranti-Tiritan, C., Hackspacher, P. C., Souza, D. H., & Siqueira- Ribeiro, M. C. (2014). The use of the Stream Length-Gradient index in morphotectonic analysis of Drainage basins in Poços De Caldas Plateau, Se Brazil. International Journal Of Geosciences, 5, 1383–1394.

Erginal, A. E. ve Cürebal, İ. (2007). Soldere Havzasının jeomorfolojik özelliklerine morfometrik yaklaşım: Jeomorfik indisler ile bir uygulama. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 17, 203–210.

Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1), 107–111. http://dx.doi.org/10.1007/s00254-007- 0969-2

Farhan, Y., Anbar, A., Enaba, O., & Al-Shaikh, N. (2015). Quantitative analysis of geomorphometric parameters of Wadi Kerak, Jordan,using remote sensing and GIS. Journal of Water Resource and Protection, 2015(7), 456–475.

Gardiner, V. (1990). Drainage basin morphometry. In A. Goudie (Ed.), Geomorphological techniques (pp. 71–81). London, UK: Unwin Hyman.

Grecu, F., Ghiţă, C., & Săcrieru, R. (2010). Relation between tectonics and meandering of river channels in the Romanian Plain . Preliminary Observation, 12, 97–104.

Guth, P. L. (2011). Drainage basin morphometry: A global snapshot from the shuttle radar topography mission. Hydrology and Earth System Sciences, 2091–2099.

Güngördü, M. (1999). Marmara Bölgesi’nin bitki coğrafyası. İstanbul: İstanbul Üniversitesi Edebiyat Fakültesi Yayınları.

Håkanson, L. (1994). A model to predict gross sedimentation in small glacial lakes. Hydrobiologia, 284(1), 19–42. http://dx.doi. org/10.1007/BF00005729

Håkanson, L. (2005). The importance of lake morphometry for the structure and function of lakes. International Review of Hydrobiology, 90(4), 433–461. http://dx.doi.org/10.1002/iroh.200410775

Håkanson, L., Gyllenhammar, A., & Brolin, A. (2004). A dynamic compartment model to predict sedimentation and suspended particulate matter in coastal areas. Ecological Modelling, 175(4), 353–384. http://dx.doi.org/10.1016/j.ecolmodel.2003.09.036

Hlaing, K. T., Haruyama, S., & Aye, M. M. (2008). Using GISbased distributed soil loss modeling and morphometric nalysis to prioritize watershed for soil conservation in Bago river basin of Lower Myanmar. Frontiers of Earth Science in China, 2(4), 465– 478. http://dx.doi.org/10.1007/s11707-008-0048-3

Horton, R. E. (1932). Drainage basin characteristics. American Geophysics Union, 13(1), 350–361.

Horton, R. E. (1945). Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bulletin Of The Geological Society of America, 56, 275–330.

Hoşgören, Y. (2001). Hidrografya’nın ana çizgileri I: Yeraltısularıkaynaklar- akarsular (4. Baskı). İstanbul: Çantay Kitabevi.

Hurtrez, J-E., Lucazeau, F., Lavé, J., & Avouac, J-P. (1994). Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal. Journal of Geophysical Research, 104, 779–786. http://dx.doi.org/10.1029/1998JB900098

Ibrahim Batis, K., & Ahmed, S. A. (2014). Evaluation of morphometric parameters a comparative study from Cartosat DEM , SRTM and SOI Toposheet in Karabayyanahalli sub-watershed, Karnataka. International Journal of Research, 11, 679–688.

Jenson, S., & Domingue, J. (1988). Extracting topographic structure from digital elevation data for geographic ınformation system analysis. Photogrammetric Engineering And Remote Sensing, 54(11), 1593–1600.

Jones, R. (2002) Algorithms for using a sym for mapping catchment areas of stream sediment samples. Computer And Geosciences, 28, 1051–1060.

Kaliraj, S., Chandrasekar, N., & Magesh, N. S. (2014). Morphometric analysis of the River Thamirabarani sub-basin in Kanyakumari District, South west coast of Tamil Nadu, India, using remote sensing and GIS. Environmental Earth Sciences, 73(11), 7375–7401.

Karabulut, M., Küçükönder M. ve Topuz, M. (2013). Alata (Erdemli) Deresi’nin jeomorfometrik analizi. A. Demirci & Y. Arı (Ed.), Coğrafyacılar Derneği Yıllık Kongresi bildiriler kitabı içinde (s. 450–459). İstanbul: Coğrafyacılar Derneği.

Keller, E. A., & Pinter, N. (1996). Active tectonics: Earthquakes, uplift and landscape. London, UK: Pearson. Ket-Ord, R., Tangtham, N., & Udomchoke, V. (2013). Synthesizing

drainage morphology of tectonic watershed in upper ıng watershed (Kwan Phayao wetland watershed). Modern Applied Science, 7, 13–27. Koç, T. (1999). Kuzeybatı Anadolu’nun doğal mevsim özellikleri. Türk Coğrafya Dergisi, 34, 527–548.

Koshak, N., & Dawod, G. (2011). A Gis morphometric analysis of hydrological catchments within Makkah Metropolitan area , Saudi Arabia. Journal of Geomatics, 2(2), 544–554.

Langbein, W. B., & Schumm S. A. (1958). Yield of sediment ın relation to mean annual precipitation. Eos, Transactions American Geophysical Union, 39(6), 1076–1084.

Madduma Bandara, C. M. (1974). Drainage density and effective precipitation. Journal of Hydrology, 21, 235–236.

Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Jini, K. V. (2013). Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Applied Water Science, 3, 467–477. http://dx.doi.org/10.1007/s13201-013-0095-0

Malik, M. I., Bhat, M. S., & Kuchay, N. A. (2011). Watershed based drianage morphometric analysis of Lidder Catchment in Kashmir Valley Usin Geographical İnformation System. Recent Research İn Science And Technology, 3(4), 118–126.

Malmaeus, J. M., & Håkanson, L. (2003). A dynamic model to predict suspended particulate matter in lakes. Ecological Modelling, 167(3), 247–262. http://dx.doi.org/10.1016/S0304-3800(03)00166-2

Marchi, L., & Dalla Fontana, G. (2005). GIS morphometric indicators for the analysis of sediment dynamics in mountain basins. Environmental Geology, 48(2), 218–228. http://dx.doi.org/10.1007/s00254-005-1292-4

Melton, M. (1957). An analysis of the relation among elements of climate, surface properties and geomorphology. New York, NY: Columbia University, Department Of Geology.

Montgomery, D. R., & Dietrich, W. E. (1992). Channel initiation and The problem of Landscape Scale. Science, 255, 826–830. http:// dx.doi.org/10.1126/Science.255.5046.826

Obi Reddy, G. P., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage Morphometry And Its Influence On Landform Characteristics in A Basaltic Terrain, Central India - A Remote Sensing And Gis Approach. International Journal Of Applied Earth Observation And Geoinformation, 6, 1–16. http://dx.doi.org/10.1016/J. Jag.2004.06.003

Özdemir, H. (2007). Havran Çayı Havzasının (Balıkesir) Cbs ve uzaktan algılama yöntemleriyle taşkın ve heyelan risk analizi. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.

Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology, 56, 1405–1415. http:// dx.doi.org/10.1007/S00254-008-1235-Y

Özdemir, H. (2011). Havza morfometrisi ve taşkınlar. D. Ekinci (Ed.), Fiziki coğrafya araştırmaları: Sistematik ve bölgesel içinde (s. 507– 526). İstanbul: Babil.

Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12(5), 941–952.

Peltier, L. C. (1962). Area sampling for terrain analysis. The Professional Geographer, 14, 24–28. http://dx.doi.org/10.1111/ J.0033-0124.1962.142_24.X

Pincott-Miller, D., Mcgarry, D., Fairweather, H., & Srivastava, S. K. (2012). Review and framework development for addressing flash flood potential using GIS assisted spatial-hydrologic modelling. The Queensland Surveying and Spatial Conference, 1–16.

Pike, R. (2000). Geomorphometry-diversity in quantitative surface analysis. Progress in Physical Geography, 24, 1–20.

Pike, R., Evans, I., & Hengl, T. (2009). Geomorphometry: A brief guide. In T. Hengl & H. I. Reuter (Eds.), Geomorphometry: Concepts, software, applications (pp. 3–30). New York, NY: Elsevier.

Prasannakumar, V., Vijith, H., & Geetha, N. (2013). Terrain evaluation through the assessment of geomorphometric parameters using DEM and GIS: Case study of two major sub-watersheds in Attapady, South India. Arabian Journal of Geosciences, 6, 1141–1151. http:// dx.doi.org/10.1007/s12517-011-0408-2

Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N. (2014). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1), 217–232. http:// dx.doi.org/10.1007/s13201-014-0238-y

Rekha, V. B., George, A. V., & Rıta, M. (2011). Morphometric analysis and micro-watershed prioritization of peruvanthanam sub-watershed, The Manimala River Basin, Kerala, South India. Environmental Research, Engineering And Management, 57(3), 6–14.

Ritter, D., Kochel, R., & Miller, J. (2002). Process geomorphology (4th ed.). NewYork, NY: Mcgraw-Hill.

Satish, K., & Vajrappa H. J. (2014). Morphological Parameter Estimation Derived From ASTER-DEM Using GIS and Remote Sensing Techniques – A Study on Hosakote Watershed of Dakshina Pinakini River Basin, Karnataka, India. International Journal of Research, 1(10), 1959–1967.

São, O. F., Southeastern, P., & Marco, A. (2006). Morphometric characteristics of seven meso-scale river basins in State of São Paulo (Southeastern Brazil). Camınhos de Geografıa, 3(17), 20–30.

Scheidegger, A. E. (1968). Horton’s law of stream numbers. Water Resources Research, 4(3), 655–658.

Sharma, C. S., Mishra, A., & Panda, S. N. (2014). Assessing ımpact of flood on river dynamics and susceptible regions: Geomorphometric analysis. Water Resources Management, 28(9), 2615–2638. http:// dx.doi.org/10.1007/s11269-014-0630-2

Shukla, D. P., Dubey, C. S., Ningreichon, A. S., Singh, R. P., Mishra, B. K., & Singh, S. K. (2014). GIS-based morpho-tectonic studies of Alaknanda river basin: A precursor for hazard zonation. Natural Hazards, 71(3), 1433–1452. http://dx.doi.org/10.1007/s11069-013- 0953-y

Singh, O., Sarangi, A., & Sharma, M. C. (2008). hypsometric ıntegral estimation methods and its relevance on erosion status of North-Western Lesser Himalayan Watersheds. Water Resources Management, 22(11), 1545–1560. http://dx.doi.org/10.1007/ S11269-008-9242-Z

Sreedevi, P. D., Sreekanth, P. D., Khan, H. H., & Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in an Semi Arid Region: Using Srtm Data And Gıs. Environmental Earth Sciences, 70, 839–848. http://dx.doi.org/10.1007/S12665-012- 2172-3

Srınıvasa Vıttala, S., Govındaıah, S., & Honne Gowda, H. (2004). Morphometric analysis of sub-watersheds in The Pavagada Area of Tumkur District, South India using remote sensing and Gis techniques. Journal Of The Indian Society Of Remote Sensing, 32(4), 351–362. http://dx.doi.org/10.1007/Bf03030860

Sunkar, M., & Tonbul, S. (2011). Hydrographic analysis of Iluh River (Batman) in relation to flood and torrent events. Procedia-Social and Behavioral Sciences, 19, 537–546. http://dx.doi.org/10.1016/j. sbspro.2011.05.167

Strahler, A. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63, 923–938.

Şengör, A. M. C., & Ketin, İ. (1989). Tectonic evolution of the Tethyan Region. Netherlands: Kluwer Academic Publishers.

Taylor, P., Bhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the Upper Krishna Basin using cartosat DEM. Geocarto International, 29, 878–894. http://dx.doi.org/10.1080/10 106049.2013.868042

Tarboton, D. G., Bras, R. L., Rodrıguez-Iturbe, I. (1992). A physical basis for drainage density. Geomorphology, 5(1–2), 59–76. Tarboton, D. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–320.

Telteu, C. E., & Zaharia, L. (2012). Morphometrical and dynamical features of the South Dobrogea Lakes, Romania. Procedia Environmental Sciences, 14, 164–176. http://dx.doi.org/10.1016/j. proenv.2012.03.016

Thomas, J., Joseph, S., Thrivikramji, K. P., Abe, G., & Kannan, N. (2012). Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environmental Earth Sciences, 66(8), 2353–2366. http://dx.doi.org/10.1007/s12665-011-1457-2

Verstappen, H. T. (1983). Applied geomorphology: Geomorphological surveys for environmental development. New York, NY: Elsevier Science.

Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611–623. http://dx.doi.org/10.1007/s12665- 010-0551-1

Yunus, A. P., Oguchi, T., & Hayakawa, Y. S. (2014). Morphometric analysis of drainage basins in the western arabian peninsula using multivariate statistics. International Journal of Geosciences, 5(5), 527–539.

Zavoianu, I. (1978). Morphometry of drainage basins. Bucharest: Elsevier

Kaynak Göster