THE EFFECT OF VARIOUS BACK-FILLING TECHNIQUES ON THE FRACTURE RESISTANCE OF SIMULATED PERFORATING INTERNAL RESORPTION CAVITIES REPAIRED WITH MTA

Background and Aim: This study assessed the effect of various back-filling materials on the fracture resistance of teeth with simulated perforated internal resorption cavities repaired with MTA. Materials and Methods: Sixty single-rooted teeth were used. Twelve teeth were not instrumented and served as a negative control (Group NC). Forty-eight roots were prepared and internal resorption cavities were created. Twelve teeth were served as a positive control (Group PC). The apical 4 mm of the 36 root canals were obturated with gutta-percha/sealer. Simulated internal resorption cavities were repaired with MTA and divided into 3 groups. Back-fillings were performed with MTA, FRC (Fiber-reinforced composite post) or GP (sealer+gutta-percha). Results: The mean fracture values of NC were significantly higher than groups with FRC, GP, and PC (p0.05). No significant difference was found among FRC, MTA, and GP (p>0.05). Fracture resistance values of PC group were statistically lower than NC and MTA groups (p

ÇEŞİTLİ DOLUM TEKNİKLERİNİN MTA İLE TAMİR EDİLEN YAPAY İÇ KÖK REZORPSİYON KAVİTELİLERİNİN KIRILMA DİRENÇLERİ ÜZERİNE ETKİSİ

Amaç: Bu çalışmada farklı dolum tekniklerinin MTA ile tamir edilen yapay olarak hazırlanmış iç kök rezorpsiyonlu dişlerin kırılma direnci üzerine etkisi değerlendirildi. Gereç ve Yöntem: 60 adet tek köklü diş kullanıldı. 12 tane diş genişletilmedi ve negatif kontrol grubu olarak ayrıldı (NK). 48 diş genişletildi ve iç kök rezorpsiyon kaviteleri oluşturuldu.12 diş pozitif kontrol (PK) grubu olarak ayrıldı.36 dişin kök kanalının 4 mm’lik apikal kısmı gütaperka/kanal dolgu patı ile dolduruldu. Yapay olarak hazırlanan iç kök rezorpsiyon kaviteleri MTA ile dolduruldu ve dişler 3 gruba ayrıldı. Kök kanalları MTA,FRC (fiberle güçlendirilmiş kompozit post) veya GP(güta perka+kök kanal dolgu patı) ile dolduruldu. Bulgular: NK grubundaki ortalama kırılma değerleri, MTA grubu hariç olmak üzere (p>0.05), FRC,GP ve PK gruplarından istatistiksel olarak daha yüksek bulundu (p0.05). PK grubunun kırılma direnci değerleri NK ve MTA gruplarından istatistiksel olarak daha düşük bulundu (p

Kaynakça

Patel S, Ford TP. Is the resorption external or internal? Dent Update 2007; 34: 218-220, 222, 224-226, 229.

Tronstad L. Root resorption − etiology, terminology and clinical manifestations. Endod Dent Traumatol 1988; 4: 241-252.

Wedenberg C, Zetterqvist L. Internal resorption in human teeth − a histological, scanning electron microscopic, and enzyme histochemical study. J Endod 1987; 13: 255-259.

Gabor C, Tam E, Shen Y, Haapasalo M. Prevalence of internal inflammatory root resorption. J Endod 2012; 38: 24-27.

Caliskan MK, Turkun M. Prognosis of permanent teeth with internal resorption: a clinical review. Endod Dent Traumatol 1997; 13: 75-81.

Nilsson E, Bonte E, Bayet F, Lasfargues JJ. Management of internal root resorption on permanent teeth. Int J Dent 2013; 2013: 929486.

Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999; 25: 197-205.

Hsien HC, Cheng YA, Lee YL, Lan WH, Lin CP. Repair of perforating internal resorption with mineral trioxide aggregate: a case report. J Endod 2003; 29: 538-539.

Jacobovitz M, de Lima RK. Treatment of inflammatory internal root resorption with mineral trioxide aggregate: a case report. Int Endod J 2008; 41: 905-912.

Abuabara A, Costa RG, Morais EC, Furuse AY, Gonzaga CC, Filho FB. Prosthetic rehabilitation and management of an MTA-treated maxillary central incisor with root perforation and severe internal resorption. J Prosthodont 2013; 22: 413-418.

Bendyk-Szeffer M, Lagocka R, Trusewicz M, Lipski M, Buczkowska-Radlinska J. Perforating internal root resorption repaired with mineral trioxide aggregate caused complete resolution of odontogenic sinus mucositis: a case report. J Endod 2015; 41: 274-278.

Kothari HJ, Kumar R. Endodontic management of a mandibular second premolar with perforating internal resorption by using MTA and cone beam computed tomography as a diagnostic aid. J Conserv Dent 2013; 16: 380-384.

Yadav P, Rao Y, Jain A, Relhan N, Gupta S. Treatment of internal resorption with mineral trioxide aggregates: a case report. J Clin Diagn Res 2013; 7: 2400-2401.

Goldberg F, Kaplan A, Roitman M, Manfre S, Picca M. Reinforcing effect of a resin glass ionomer in the restoration of immature roots in vitro. Dent Traumatol 2002; 18: 70-72.

Turker SA, Uzunoglu E, Sungur DD, Tek V. Fracture Resistance of Teeth with Simulated Perforating Internal Resorption Cavities Repaired with Different Calcium Silicate – based Cements and Backfilling Materials. J Endod 2018; 44: 860-863.

Silveira FF, Nunes E, Soares JA, Ferreira CL, Rotstein I. Double ‘pink tooth’ associated with extensive internal root resorption after orthodontic treatment: a case report. Dent Traumatol 2009; 25: 43-47.

El-Ma’aita AM, Qualtrough AJ, Watts DC. Resistance to vertical fracture of MTA-filled roots. Dent Traumatol 2014; 30: 36-42.

Torabinejad M, Hong CU, Pitt Ford TR, Kaiyawasam SP. Tissue reaction to implanted super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. J Endod 1995; 21: 569-571.

Teixeira FB, Teixeira EC, Thompson JY, Trope M. Fracture resistance of roots endodontically treated with a new resin filling material. J Am Dent Assoc 2004; 135: 646-652.

Di Fiore PM, Reyes A, Dorn SO, Cron SG, Ontiveros JC. Evaluation of a calcium silicate-based cement as a root reinforcement material for endodontically treated maxillary anterior teeth. J Prosthet Dent 2016; 115: 35-41.

Girish K, Mandava J, Chandra RR, Ravikumar K, Anwarullah A, Athaluri M. Effect of obturating materials on fracture resistance of simulated immature teeth. J Conserv Dent 2017; 20: 115-119.

Karapinar-Kazandag M, Basrani B, Tom-Kun Yamagishi V, Azarpazhooh A, Friedman S. Fracture resistance of simulated immature tooth roots reinforced with MTA or restorative materials. Dent Traumatol 2016; 32: 146–152.

Linsuwanont P, Kulvitit S, Santiwong J. Reinforcement of Simulated Immature Permanent Teeth after Mineral Trioxide Aggregate Apexification. J Endod 2018; 44: 163-167.

Tanalp J, Dikbas I, Malkondu O, Ersev H, Gungor T, Bayirli G. Comparison of the fracture resistance of simulated immature permanent teeth using various canal filling materials and fiber posts. Dent Traumatol 2012; 28: 457-464.

Schmoldt SJ, Kirkpatrick TC, Rutledge RE, Yaccino JM. Reinforcement of simulated immature roots restored with composite resin, mineral trioxide aggregate, gutta - percha,or a fiber post after thermocycling. J Endod 2011; 37: 1390-1393.

Brito-Junior M, Pereira RD, Verissimo C, Soares CJ, Faria-e-Silva AL, Camilo CC et al. Fracture resistance and stress distribution of simulated immature teeth after apexification with mineral trioxide aggregate. Int Endod J 2014; 47: 958-966.

Kaynak Göster