Response Surface Methodology for Extraction of Curcumin from Turmeric and Piperine from Black Pepper

Considering that approximately a third of all drugs currently on the market is derived from natural products, curcumin attracted attention due to its anticancer, antioxidative, antiinflammatory and antimicrobial properties. Unfortunately, its low solubility and depending on that a poor bioavailability are limiting factors for its clinical application. It was shown that the administration of curcumin with piperin, the main component of black pepper, increased the bioavailability of curcumin. In addition, piperine increased the plasma concentration and delayed the elimination of drugs like phenytoin and rifampin, and has antiinflammatory and antifungal properties among others. Considering the literature has shown that for extracting curcumin and piperine, respectively, Soxhlet, microwave-assisted extraction, supercritical carbon dioxide extraction and concentional extraction with ethanol as solvent were used among others. According to the concentional extraction of curcumin with ethanol important parameter like the ethanol concentration was not investigated. In addition the maximum extraction time in this case was only 50 minutes, too short in our opinion. Due to these facts the optimum extraction parameters for the conventional extraction of curcumin from turmeric and of piperine from black pepper, respectively, were investigted in this study, with respect to extraction time of 7-21 hours, ethanol concentration of 10-90 % and drug to solvent ratio of 1:10-1:30.  Response surface methodology was used as a tool to determine the optimum conditions for the extraction of curcumin and piperine, with help of an experimental design, central composite design. The ideal parameter for this conventional extraction of curcumin from turmeric and of piperine from black pepper, respectively, were an extraction time of 15 hours, an ethanol concentration of 70 % (v/v) and a drug to solvent ratio of 1:20.

___

  • 1. Kingston, D. G. I. Modern natural products drug discovery and its relevance to biodiversity conservation. Journal of Natural Products, 2011; 74, 496 – 511.
  • 2. Jayaprakasha, G. K.; Jaganmohan Rao, L.; Sakariah, K. K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chemistry, 2006; 98, 720-724.
  • 3. Sreejayan; Rao; M. N. A. Nitric oxide scavenging by curcuminoids. Journal of Pharmacy and Pharmacology, 1997; 49, 105-107.
  • 4. Villegas, I.; Sanchez-Fidalgo, S.;, de la Lastra, C. A. New mechanisms and therapeutic potential of curcumin for colorectal cancer. Molecular Nutrition & Food Research. 2008; 52, 1040-1061.
  • 5. Yoysungnoen, P.; Wirachwong, P.; Changtam, C.; Suksamram, A., Patumraj, S. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice, World Journal of Gastroenterology WJG. 2008; 14, 2003-2009.
  • 6. Ammon, H. P. T.; Wahl, M. A. Pharmacology of curcuma-longa. Planta Medica, 1991; 57, 1-7.
  • 7. Jurenka, J. S. Anti-inflammatory properties of curcumin, a major constituent of curcuma longa: a review of preclinical and clinical research. Alternative Medicine Review, 2009; 14, 141-153.
  • 8. Kim, M. K.; Choi, G. J.; Lee, H. S.Fungicidal property of Curcuma longa l. Rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. Journal of Agricultural and Food Chemistry, 2003; 51, 1578-1581.
  • 9. Wang, Y.; Lu, Z. X.; Wu, H.; Lv, F. X. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. International Journal of Food Microbiology, 2009; 136, 71-74.
  • 10. Yang, K.; Lin, L.; Tseng, T.; Wang, S.; Tsai, T. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. Journal of Chromatography B 2007; 853, 183-9.
  • 11. Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Ravi Kumar, M.N.V. Nanoparticle encapsulation improves oral bioavailability ofcurcumin by at least 9-times when compared to curcuminadministered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences, 2009; 37, 223–30.
  • 12. Tonnesen, H. H. Solubility, chemical and photochemical stability of curcumin in surfactant solutions e studies of curcumin and curcuminolds. Pharmazie 2002; 57, 820-824.
  • 13. Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S.S.R. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica. 1998; 64, 353-6.
  • 14. Han, Y.; Chin Tan, T.M.; Lim L.-Y. In vitro and in vivo evaluation of theeffects of piperine on P-gp function and expression. Toxicology and Applied Pharmacology, 2008; 230, 283–9.
  • 15. Wahlang, B.; Pawar, Y.B.; Bansal, A.K. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. European Journal of Pharmaceutics and Biopharmaceutics, 2011;77, 275–82.
  • 16. Navickiene, H.M.D.; Alecio, A.C.; Kato, M.J.; Bolzani, V.S.; Young, M.C.M.; Cavalheiro, A.J.; Furlan, M. Antifungal amides from Piper hispidum and Piper tuberculatum, Phytochemistry, 2000; 55, 621 – 626.
  • 17. Bajad,S.; Bedi, K. L.; Singla, A. K.; Johri, R. K. Antidiarrhoeal activity of piperine in mice. Planta Medica, 2001; 67, 284 – 287
  • 18. Mujumdar, A.M.; Dhuley, J.M.; Deshmukh, V.; Raman, P.H.; Naik, S.R.; Anti-inflammatory activity of piperine. Japanese Journal of Medical Science & Biology, 1990; 43, 95 – 100.
  • 19. Stohr, J.R.; Xiao, P.G.; Bauer, R. Constituents of Chinese Piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro. Journal of Ethnopharmacol. 2001; 75, 133 – 139.
  • 20. Zaugg, J.; Baburin, I.; Strommer, B.; Kim, H.-J.; Hering, S.; HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site. Hamburger, M. Journal of Natural Products, 2010; 73, 185-191.
  • 21. Hering, S.; Erker, T.; Schwarz, T.; Baburin, I.; Schellmann, D. Novel piperine derivatives as gaba - a receptors modulators, WO2011080313A1, 2011.
  • 22. Khajuria, A.; Zutshi, U.; Bedi, K.L. Permeability characteristics ofpiperine on oral absorption—an active alkaloid from peppersand a bioavailability enhancer. Indian Journal of Experimental Biology, 1998; 36, 46–50.
  • 23. Okura, T.; Ibe, M.; Umegaki, K.; Shinozuka, K., Yamada, S. Effects ofdietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells. Biological & Pharmaceutical Bulletin, 2010; 33, 255–9.
  • 24. Velpandian, T.; Jasuja, R.; Bhardwaj, R.K.; Jaiswal, J.; Gupta, S.K. Piperine in food: interference in the pharmacokinetics of phenytoin. European Journal of Drug Metabolism and Pharmacokinetics, 2001; 26, 241–247.
  • 25. Zutshi, R.K.; Singh, R.; Zutshi, U.; Johri, R.K.; Atal, C.K. Influence of piperine on rifampicin blood levels in patients of pulmonary tuberculosis. Journal of Association of Physicians of India JAPI, 1985; 33, 223–224.
  • 26. Schuetz, E.G.; Schinkel, A.H.; Relling, M.V.; Schuetz, J.D. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proceedings of the National Academy of Sciences of the United States of America 1996; 93, 4001–4005.
  • 27. Schinkel, A.H.; Wagenaar, E.; Mol, C.A.; van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. Journal of Clinical Investigation. 1996; 97, 2517–2524.
  • 28. Bhardwaj, R.K.; Glaeser, H.; Becquemont, L.; Klotz, U.; Gupta, S.K.; Fromm, M.F. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4, Journal of Pharmacology and Experimental Therapeutics. 2002; 302, 645-650.
  • 29. Vogel, H.; Pelletier, J. Curcumin-biological and medicinal properties, Journal of Pharmacology, 1815; 2, 50.
  • 30. Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcuminfrom powdered rhizomes of turmeric plant marketed in Maragheh city of Iranwith soxhlet technique, Iranian Chemical Communication, 2014; 2, 236–243.
  • 31. Mandal, V.; Mohan,Y.; Hemalatha, S. Microwave assisted extraction ofcurcumin by sample–solvent dual heating mechanism using Taguchi L 9orthogonal design, Journal of Pharmaceutical and Biomedical Analysis, 2008; 46, 322–327.
  • 32. Wakte, P.; Sachin, B.; Patil, A.; Mohato, D.; Band, T.; Shinde, D. Optimization ofmicrowave, ultra-sonic and supercritical carbon dioxide assisted extractiontechniques for curcumin from Curcuma longa, Separation and Purification Technology, 2011; 79, 50–55.
  • 33. Euterpio, M.A.; Cavaliere, C.; Capriotti, A.L.; Crescenzi, C. Extending theapplicability of pressurized hot water extraction to compounds exhibitinglimited water solubility by pH control: curcumin from the turmeric rhizome, Analytical and Bioanalytical Chemistry, 2011; 401, 2977–2985.
  • 34. Kurmudle, N.; Kagliwal, L D.; Bankar, S B.; Singhal, R.S. Enzyme-assistedextraction for enhanced yields of turmeric oleoresin and its constituents, Food Bioscience. 2013; 3, 36–41.
  • 35. Kiamahalleh, M.V.; Najafpour-Darzi, G.;, Rahimnejada, M.; Moghadamnia, A.A.; Kiamahalleh, M.V. High performance curcumin subcritical water extraction fromturmeric (Curcuma longa L.). Journal of Chromatograph B, 2016; 1022, 191–198.
  • 36. Sogi, D. S.; Sharma S.; Oberoi D. P. S.; Wani I. A. Effect of extraction parameters on curcumin yield from Turmeric. Journal of Food and Science Technology, 2010; 47(3), 300–304.
  • 37. Priyadarsini, K.I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules, 2014; 12, 20091-20112.
  • 38. Shen, L.; Ji, H. -F. The pharmacology of curcumin: Is it the degradation products? Trends in Molecular Medicine, 2012; 18, 138–144.
  • 39. Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L. I.; Ho, Y. S.; Hsieh, C.Y.; Lin, J. K. Stability of curcumin in buffer solutions and characterization of its degradation products, Journal of Pharmaceutical and Biomedical Analysis, 1997; 15, 1867–1876.
  • 40. Bener, M.; Özyürek, M.; Güçlü, K.; Apak, R. Optimization of Microwave-Assisted Extraction of Curcumin from Curcuma longa L. (Turmeric) and Evaluation of Antioxidant Activity in Multi-Test Systems. Records of Natural Products 2016; 10:5, 542-554.
  • 41. Kowsalya, R.; Krishnaveni, M. Extraction and Antibacterial Studies of Curcumin. Journal of Pure ad Applied Microbiology, 2011; 5, 217-321.
  • 42. Avram, M., Stroescu, M.; Stoica-Guzun, A.; Floarea, O.; Dobre, T. Optimization of Curcumin Extraction from Turmeric Powder using a Box-Behnken Design (BBD). Revista de chimie, 2015; 66, 79-82.
  • 43. Marion, L. Alkaloids – Chemistry and Physiology, Academic Press, New York, 1960, 31 pp.
  • 44. Staudinger, H.; Schneider, H: Ber. Ketene, eine neue Körperklasse. Dtsch. Chem. Ges. B 1923, 56B, 699 – 711.
  • 45. Ressmann, A.K.; Zirbs, R.; Pressler, M.; Gaertner, P.; Bica, K. Surface-active Ionic Liquids for Micellar Extraction of Piperine from Black Pepper. Zeitschrift für Naturforschung, 2013; 68b, 1129 – 1137.
  • 46. Basile, A.; Clifford, A. A.; Jimnez-Carmona, M. Extraction of Rosemary by Superheated Water. Journal of Agricultural and Food Chemistry, 1998, 46, 5205-5209.
  • 47. Vidal, J. P.; Richard, H. Production of Black Pepper Oleoresin by Dense Carbon dioxide or Carbon dioxide-Ethanol Extraction. Sciences des aliments, 1987, 7 (3), 481-498.
  • 48. Hans, J. Extraction of Organic Constituents from Solids. German offen. DE 3,706,594, 1987; Chemical Abstracts, 1987, 109, P172901e.
  • 49. Raman, G.; Gaikar, V.G. Microwave-Assisted Extraction of Piperine from Piper nigrum, Industrial & Engineering Chemistry Research, 2002; 41, 2521-2528.
  • 50. Raman, G.; Gaikar, V.G. Extraction of Piperine from Piper nigrum (Black Pepper) by Hydrotropic Solubilization, Industrial & engineering chemistry research, 2002; 41, 2966-2976.
  • 51. Padalkar, KV.; Gaikar, V.G. (2008) Extraction of Piperine from Piper Nigrum (Black Pepper) by Aqueous Solutions of Surfactant and Surfactant + Hydrotrope Mixtures. Separation Science and Technology, 2008; 43, 3097-3118.
  • 52. Triveni, R.; Shamala, T. R.; Rastogi, N. K. Optimised production and utilization of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry, 2001; 36, 787–795.
  • 53. Kalaimahan, T.; Tapobrata, P. Application of response surface methodology to evaluate the influence of temperature and initial pH on the production of b-1,3-glucanase and carboxymethylcellulase from Trichoderma hzrzianum. Enzyme and Microbial Technology, 1995; 11, 1043–1049.
  • 54. Moorthi, C.; Kumar, C.S.; Mohan, S.; Krishnan, K.; Kathiresan, K. Application of validated RP-HPLC-PDA method for the simultaneous estimation of curcumin and piperine in Eudragit E 100 nanoparticles. Journal of Pharmacy Research, 2013; 7, 224-229.
  • 55. Firatligil-Durmus, E.; Evranuz, O. Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT - Food Science and Technology, 2010; 43, 226–231.
  • 56. Quanhong, L.; Caili, F. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 2005; 92, 701–706.