Süreç Verilerinin Normal Dağılışa Uymadığı Durumlarda Kullanılan Süreç Yetenek Analizi Yöntemleri Üzerine Bir Araştırma

Öz Süreç yetenek analizi, bir üretim sürecinin, üretilen ürünlere ait kalite karakteristikleri için belirlenen toleransları karşılama yeteneğini ölçmek için kullanılmaktadır. Literatürde ilk önerilmiş olan süreç yetenek indeksleri, süreç verilerinin normal dağılması, kalite karakteristiklerine ait toleransların simetrik olması ve sürecin kontrol altında olması varsayımları altında çalışmaktadır. Daha sonraki çalışmalarda, (i) süreç verilerinin normal dağıldığı ve toleransların asimetrik olduğu, (ii) süreç verilerinin asimetrik bir dağılıma uyduğu ve toleransların simetrik olduğu durumlar için bazı yetenek indeksleri önerildiği görülmektedir. Bu çalışmanın amacı, literatürdeki çalışmalardan farklı olarak, toleransların asimetrik ve süreç verilerinin dağılımının normal olmadığı durumlar için yeni bir süreç yetenek indeksi önermektir. Asimetrik toleranslı durumlarda, üretim süreci tarafından üretilmesi istenen bir asimetrik dağılımın ne olması gerektiğini bulmak ve üretim sürecinin gerçekte ürettiği verilerin bu istenen dağılıma ne kadar yaklaştığını belirlemek için Pearson dağılım ailesi ile çalışılmıştır. Önerilen indeksin çeşitli durumlarda gösterdiği performans örneklerle incelenmiştir.

___

  • Bai, D. S. ve Choi, S. S. (1997). Process capability indices for skewed populations. MS Thesis, Dept. Industrial Engineering, Advanced Institute of Science and Technology, Taejon, South Korea.
  • Barnett, N. S. (1996). Process control and product quality: the Cp and Cpk revisited. International Journal of Quality and Reliability Management, 7(5): 34-43.
  • Boyles, R.A. (1994). Process capability with asymmetric tolerances. Communications in Statistics: Simulation and Computation, 23(3):615-643.
  • Castagliola, P. (1996). Evaluation of Non Normal Process Capability Indices using Burr's Distributions. Quality Engineering, 8(4):587-593.
  • Chan, L. K., Cheng, S. W. ve Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of Quality Technology, 20(3):162-175
  • Chang, Y. S., Choi, I. S. ve Bai, D. S. (2002). Process capability indices for skewed populations. Quality and Reliability Engineering International, 18(5):383-393.
  • Chatterjee, M. ve Chakraborty, A. K. (2017). Unification of some multivariate process capability indices for asymmetric specification region. Statistica Neerlandica, 71(4): 286–306.
  • Chen, K. S. ve Pearn, W. L. (2001), Capability indices for processes with asymmetric tolerances. Journal of the Chinese Institute of Engineers, 24:559-568.
  • Chen, K. S. (1998). Incapability index with asymmetric tolerance. Statistica Sinica, 8:253-262.
  • Chen, K. S., Pearn, W. L. ve Lin, P. C. (1999). A new generalization of the capability index C„m for asymmetric tolerances. International Journal of Reliability, Quality and Safety Engineering, 6(4):383-398.
  • Chen, K. S., Wang, K. J. ve Chang, T. C. (2017). A novel approach to deriving the lower confidence limit of indices Cpu, Cpl, and Cpk in assessing process capability. International Journal of Production Research, 55(17): 4963- 4981.
  • Choobineh, F. ve Branting, D. (1986): A simple approximation for semivariance. European Journal of Operations Research, 27, 364–370.
  • Clements, J. A. (1989). Process capability calculations for non-normal distributions. Quality Progress, September, 95-100.
  • Coleman, D. E. (1991). Relationships between loss and capability indices. Applied Math. Comp. Techn., ALCOA Technical Center, PA.
  • Dianda, D. F., Quaglino, M. B., ve Pagura, J. A. (2015). Performance of multivariate process capability indices under normal and non-normal distributions. Quality and Reliability Engineering International, 32(7): 2345–2366.
  • Dündar, S. ve Şehirlioğlu, A.K. (2014). Pearson Dağılımlarının Ön Bilgi ile Belirlenmesi. Makine Teknolojileri Elektronik Dergisi, (11) 41-59.
  • Elderton, W. P., ve N. L. Johnson. (1969). Systems of Frequency Curves. Cambridge University Press, London.
  • Franklin, L. A. ve Wasserman, G. S. (1991). Bootstrap lower confidence limits for capability indices. Journal of Quality Technology, 24(4):196-210.
  • Franklin, L. A. ve Wasserman, G. S. (1992). Bootstrap lower confidence limits estimates for Cjkp (the new flexible process capability indices), Pakistan Journal of Statistics, 10(1):33-45.
  • Gensidy, A. (1985). Cp and Cpk. Quality Progress, 18(4):7-8.
  • Hsu, C. H., Chen, K. S. ve Yang, C. M. (2016). Construction of closed interval for process capability indices Cpu, Cpl, and Spk based on Boole’s inequality and de Morgan’s laws. Journal of Statistical Computation and Simulation, 86(18): 3701–3714.
  • Kahraman, C., Parchami, A., Çevik Onar, S. ve Öztayşi. B. (2017). Process capability analysis using intuitionistic fuzzy sets. Journal of Intelligent & Fuzzy Systems, 32: 1659-1671.
  • Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1):41-52.
  • Kashif, M., Aslam, M., Al-Marshadi, A. H. ve Jun, C. H. (2016). Capability indices for non-normal distribution using Gini’s mean difference as measure of variability. IEEE Access, 4: 7322–7330.
  • Kotz, S. ve Johnson, N. L. (2002). Process capability indices - a review, 1992- 2000. Journal of Quality Technology, 34(1):2-53.
  • Kotz, S. ve Lovelace C. R. (1998). Process Capability Indices in Theory and Practice, Arnold, London, U.K.
  • Kotz, S. ve Johnson N.L. (1993). Process Capability Indices. London: Chapman&Hall, s.53.
  • Maravelakis, P. E. (2016). Process capability indices for data following the poisson or binomial distribution. Quality Technology & Quantitative Management, 13(2): 197-206.
  • Mondal, S. C. (2015). Process capability-a surrogate measure of process robustness: a case study. International Journal of Quality & Reliability Management, 33(1): 90-106.
  • Pan, J. N., Li, C. I. ve Shih, W. C. (2016). New multivariate process capability indices for measuring the performance of multivariate processes subject to non-normal distributions. International Journal of Quality & Reliability Management, 33(1): 42-61.
  • Parchami, A., Sadeghpour-Gildeh, B., Nourbakhsh, M. ve Mashinchi, M. (2014). A new generation of process capability indices based on fuzzy measurements. Journal of Applied Statistics, 41(5): 1122–1136.
  • Pearn, W. L., Kotz, S. ve Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4): 216-231.
  • Pearn, W. L., Lin, P. C. ve Chen, K. S. (2001). Estimating process capability index for asymmetric tolerances: distributional properties, Metrika, 54:261 – 279.
  • Piña-Monarrez, M. R., Ortiz-Yañez, J. F. ve Rodríguez-Borbón, M. I. (2015). Non-normal capability indices for the weibull and lognormal distributions.
  • Quality and Reliability Engineering International, 32(4): 1321–1329.
  • Polansky, A. M. (1998). A smooth nonparametric approach to process capability. Quality and Reliability Engineering International, 14:43-48.
  • Porter, L. J. ve Oakland, J. S. (1991). Process capability indices - an overview of theory and practice. Quality and Reliability Engineering International, 7:437-448.
  • Rezaye Abbasi Charkhi, M., Aminnayeri, M. ve Amiri, A. (2016). Process capability indices for logistic regression profile. Quality and Reliability Engineering International, 32(5): 1655-1661.
  • Rodriguer, R. N. (1992). Recent developments in process capability analysis. Journal of Quality Technology, 24:176-187.
  • Seifi, S. ve Nezhad, M. S. F. (2017). Variable sampling plan for resubmitted lots based on process capability index and Bayesian approach. The International Journal of Advanced Manufacturing Technology, 88: 2547–2555.
  • Senvar, Ö. ve Kahraman, C. (2014). Type-2 fuzzy process capability indices for non-normal processes. Journal of Intelligent & Fuzzy Systems, 27(2): 769– 781.
  • Senvar, Ö. ve Kahraman, C. (2014a). Fuzzy process capability indices using Clements’ method for non-normal processes. Journal of Multiple-Valued Logic Soft Computing, 22(1): 95–121.
  • Shore, H. (1998). A new approach to analyzing non-normal quality data with application to process capability analysis. International Journal of Production Research, 36(7):1917-1933.
  • Somerville, S. E. ve Montgomery, D. C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 9(2):305-316.
  • Sullivan, L.P. (1984). Reducing Variability: A New Approach to Quality. Quality Progress, 17(7):15-21.
  • Tang, L. C, Than, S. E. ve Ang, B. W. (1997). A graphical approach to obtaining confidence limits of Cpk. Quality and Reliability Engineering International, 13:337- 346.
  • Vannman, K. (1997). A general class of capability indices in the case of asymmetric tolences. Communication in Statistics: Theory and Methods, 26(8):2049-2072.
  • Wu, H-H., Swain, J. J., Farrington, P.A. ve Messimer, S. L. (1999). A weighted variance capability index for general non-normal processes. Quality and Reliability Engineering International, 15, 397- 402.
  • Yang, J., Tingting, G., Yuan, C. ve Min, X. (2014). Process capability indices based on the highest density interval. Quality and Reliability Engineering International, 31(8): 1327-1335.