Polivinil borat/TiO2 nanokompozitlerin UVA ve doğal güneş işığı altındaki fotokataliz uygulaması

Polivinil borat (PVB)/titanyum dioksit (TiO2) nanokompozitler, polivinil alkol ve borik asit’in TiO2 nanoparçacık varlığında çapraz bağlanma reaksiyonu ile sentezlenmiştir. Ağırlıkça %0, 10, 20 ve 30 oranında TiO2 nanoparçacık içeren nanokompozitler elde edilmiştir ve hazırlanan nanokompozitlerin fotokatalitik etkinliği metilen mavisinin sudaki çözeltisinin UVA ışığı ve doğal güneş ışığı altındaki bozunumu ile ayrı ayrı çalışılmıştır. TiO2 katkısı ile PVB’nin fotokatalitik etkinliği artmıştır. En yüksek fotokatalitik etkinlik, ağırlıkça %30 oranında TiO2 içeren nanokompozit ile elde edilmiştir. FTIR analizi ile nanokompozitin kimyasal yapısı incelenmiştir. FTIR analizi ile, PVB ve TiO2 içeren PVB nanokompozitlerin başarılı bir şekilde sentezlendiği gösterilmiştir. SEM ve TEM analizleri ile nanokompozitlerin morfolojisi detaylı bir şekilde incelenmiştir. TiO2 nanoparçacıklarından oluşan 100 nm civarında kümeler TEM görüntülerinde gözlenmiştir.

Photocatalysis application of polyvinyl borate/TiO2 nanocomposites under UVA and natural sun lights

Polyvinyl borate (PVB)/titanium dioxide nanocomposites were synthesized through the crosslinking reaction of polyvinyl alcohol and boric acid in the presence of TiO2 nanoparticles. Nanocomposites containing 0, 10, 20 and 30 wt.% TiO2 nanoparticles were obtained and the photocatalytic activity of the prepared nanocomposites was studied by the degradation of methylene blue in aqueous solution under UVA light and natural sun light, seperately. The photocatalytic activity of PVB increased with TiO2 contribution. The highest photocatalytic activity was obtained with the nanocomposite containing 30 wt.% TiO2. The chemical structure of the nanocomposite was investigated by FTIR analysis. FTIR analysis reveals that PVB and TiO2-containing PVB nanocomposites were successfully synthesized. Morphology of the nanocomposites was studied in detail by SEM and TEM analyses. TiO2 aggregates of about 100 nm were observed on TEM images.

___

  • [1] Lee S. Y., Park, S. J., TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., 19, 1761-1769, 2013.
  • [2] Mohamed A., El-Sayed R., Osman T. A., Toprak M. S., Muhammed M., Uheida A., Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water, Environ. Res., 145, 18-25, 2016.
  • [3] Chequer F. M. D., Oliveira G. A. R., Ferraz E. R. A., Cardoso J. C., Zanoni M. V. B., Oliveira D. P., “Textile Dyes: Dyeing Process and Environmental Impact”, Chap. 6: Eco-Friendly Textile Dyeing and Finishing, InTech, London, 2013.
  • [4] Ashtekar V. S., Bhandari V. M., Shirsath S. R., Sai Chandra P. L. V. N., Jolhe P. D., Ghodke S. A., Dye Wastewater Treatment: Removal of Reactive Dyes Using Inorganic and Organic Coagulants, J. Ind. Pollut. Con., 30 (1), 33-41, 2014.
  • [5] Cantarella M., Sanz R., Buccheri M. A., Ruffino F., Rappazzo G., Scalese S., Impellizzeri G., Romano L., Privitera V., Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water, J. Photoch. Photobio. A, 321, 1–11, 2016.
  • [6] Barakat M. A., Kumar R., Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles: Degradation of Pollutants in Wastewater, Springer, New York, 1-23, 2016.
  • [7] Sáez M. R., Jaramillo L. Y., Saravanan R., Benito N., Pabón E., Mosquera E., Gracia F., Notable photocatalytic activity of TiO2-polyethylene nanocomposites for visible light degradation of organic pollutants, Express Poly. Lett., 11 (11), 899–909, 2017.
  • [8] Yuce E., Mert E. H., Krajnc P., Parin F. N., San N., Kaya D., Yildirim H., Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites, Macromol. Mater. Eng., 302 (10), 1-8, 2017.
  • [9] Wittmar A. S. M., Fu Q., Ulbricht M., Photocatalytic and Magnetic Porous Cellulose-Based Nanocomposite Films Prepared by a Green Method, ACS Sustainable Chem. Eng., 5 (11), 9858-9868, 2017.
  • [10] Janovak L., Deak A., Tallosy S. P., Sebok D., Csapo E., Bohinc K., Abram A., Palinko I., Dekany I., Hydroxyapatite-enhanced structural, photocatalytic and antibacterial properties of photoreactive TiO2/HAp/polyacrylate hybrid thin films, Surf. Coat. Technol., 326, 316-326, 2017.
  • [11] Chibac A. L., Buruiana T., Melinte V., Buruiana E. C., Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3, Beilstein J. Nanotechnol., 8, 272–286, 2017.
  • [12] Piewnuan C., Wootthikanokkhan J., Ngaotrakanwiwat P., Meeyoo V., Chiarakorn S., Preparation of TiO2/(TiO2–V2O5)/polypyrrole nanocomposites and a study on catalytic activities of the hybrid materials under UV/Visible light and in the dark, Superlattices Microstruct., 75, 105–117, 2014.
  • [13] Zhang J., Yang H., Xu S., Yang L., Song Y., Jiang L., Dan Y., Dramatic enhancement of visible light photocatalysis due to strong interaction between TiO2 and end-group functionalized P3H, Appl. Catal., B, 174–175, 193–202, 2015.
  • [14] Singh S., Mahalingam H., Singh P. K., Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review, Appl. Catal., A, 462– 463, 178– 195, 2013.
  • [15] Liu Y., Shi Y., Liu X., Li H., A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue, Appl. Surf. Sci., 396, 58-66, 2017.
  • [16] Yadav M., Yadav A., Fernandes R., Popat Y., Orlandi M., Dashora A., Kothari D. C., Miotello A., Ahuja B. L., Patel N., Tungsten-doped TiO2/reduced Graphene Oxide nano-composite photocatalyst for degradation of phenol: A system to reduce surface and bulk electron-hole recombination, J. Environ. Manage., 203 (1), 364-374, 2017.
  • [17] Tian M. J., Liao F., Ke Q. F., Guo Y. J., Guo Y. P., Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene, Chem. Eng. J., 328, 962-976, 2017.
  • [18] Yuan C., Hung C. H., Yuan C. S., Li H. W., Preparation and Application of Immobilized Surfactant-Modified PANi-CNT/TiO2 under Visible-Light Irradiation, Materials, 10 (8), 877-897, 2017.
  • [19] Gaidau C., Petica A., Ignat M., Popescu L. M., Piticescu R. M., Tudor J. A., Piticescu R. R., Preparation of silica doped titania nanoparticles with thermal stability and photocatalytic properties and their application for leather surface functionalization, Arabian J. Chem., 10 (7), 985-1000, 2017.
  • [20] Guo N., Zeng Y., Li H., Xu X., Yu H., MoS2 nanosheets encapsulating TiO2 hollow spheres with enhanced photocatalytic activity for nitrophenol reduction, Mater. Lett., 209, 417–420, 2017.
  • [21] Huang Y., Wei Y., Wang J., Luo D., Fan L., Wu J., Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance, Appl. Surf. Sci., 423, 119-130, 2017.
  • [22] Chen L., Qu Y., Yang X., Liao B., Xue W., Cheng W., Characterization and first-principles calculations of WO3/TiO2 composite films on titanium prepared by microarc oxidation, Mater. Chem. Phys., 201, 311-322, 2017.
  • [23] Paul S., Ghosh S., Barma D., De S. K., Maximization of photocatalytic activity of Bi2S3/TiO2/Au ternary heterostructures by proper epitaxy formation and plasmonic sensitization, Appl. Catal., B, 219, 287-300, 2017.
  • [24] Zhang L., Zhao Y., Zhong L., Wang Y., Chai S., Yang T., Han X., Cu2S-Cu-TiO2 mesoporous carbon composites for the degradation of high concentration of methyl orange under visible light, Appl. Surf. Sci., 422, 1093-1101, 2017.
  • [25] Boda M. A., Shah M. A., Augmented Photoelectrochemical Efficiency of ZnO/TiO2 Nanotube Heterostructures, J. Electron. Mater., 46, 6698-6703, 2017.
  • [26] Shen S. J., Yang T. S., Wong M. S., Co-sputtered boron-doped titanium dioxide films as photocatalysts, Surf. Coat. Technol., 303, 184–190, 2016.
  • [27] Lu X., Tian B., Chen F., Zhang J., Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity, Thin Solid Films, 519, 111–116, 2010.
  • [28] Yanase I., Ogaware R., Kobayashi H., Synthesis of boron carbide powder from polyvinyl borate precursor, Mater. Lett., 63, 91-93, 2009.
  • [29] Koysuren O., Karaman M., Yildiz H. B., Koysuren H. N., Dinc H., Electrospun Polyvinyl Borate/Poly(methyl methacrylate), Int. J. Polym. Mater., 63, 337–341, 2014.
  • [30] Geng S., Shah F. U., Liu P., Antzutkin O. N., Oksman K., Plasticizing and crosslinking effects of borate additives on the structure and properties of poly(vinyl acetate), RSC Adv., 7, 7483-7491, 2017.
  • [31] Koysuren O., Koysuren H. N., Photocatalytic activity of polyvinyl borate/titanium dioxide composites for UV light degradation of organic pollutants, J. Macromol. Sci. Part A Pure Appl. Chem.,
  • [32] Zhao W., Bai Z., Ren A., Guo B., Wu C., Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers, Appl. Surf. Sci. 256, 3493-3498,2010.
  • [33] Koysuren O., Koysuren H. N.,Photocatalytic activities of poly(methyl methacrylate)/titanium dioxide nanofiber mat, J. Macromol. Sci. Part A Pure Appl. Chem., 54, 80-84, 2017.
  • [34] Baskar D., Nallathambi G., Dual functional property of lycopene as a reducing agent to synthesis TiO2 nanoparticles and as a ligand to form lycopene-TiO2 nanoparticles complex, Mater. Lett., 209, 303-306, 2017.
  • [35] Masschelein W. J., Rice R. G., Ultraviolet Light in Water and Wastewater Sanitation, CRC Press, Boca Raton, U.S.A., 1-8, 2002.