Bor oksit nanoparçacıklarının dizel yakıt katkısı olarak kullanılabilirliğinin araştırılması

Bu çalışmada bor oksit (B2O3) nanoparçacıklarının dizel yakıt katkısı olarak kullanılabilirliği deneysel olarak araştırılmıştır. Bor oksit nano parçacıkları, hacimsel %20 oranında kanola yağı biyodizeli içeren dizel-biyodizel karışımına (B20) 50 ppm, 100 ppm ve 200 ppm konsantrasyonunda mekanik ve ultrasonik karıştırma yöntemleri ile eklenmiştir. Hazırlanan nanoyakıtların bazı yakıt özellikleri ölçülmüş ve ardından standart motor ayarlarında motor testleri gerçekleştirilmiştir. Bu testlerde bor oksit nanoparçacıklarının dizel motorunun yanma, performans ve emisyon karakteristiklerine etkisi araştırılmıştır. Ayrıca yakıt fiyatı ve özgül yakıt tüketimine dayalı olarak bir maliyet analizi gerçekleştirilmiştir. Elde edilen sonuçlara göre, bor oksit nanoparçacıkları yakıtın soğukta akış özelliklerini geliştirdiği ancak kinematik viskozitesini artırdığı belirlenmiştir. Motor performansı açısından bor oksit nanoparçacıklarının 100 ppm oranında kullanılabileceği belirlenmiştir. Bu nanoparçacık konsantrasyonunda motorun özgül yakıt tüketiminin %1,66 oranında azaldığı ve efektif verimin %0,96 oranında arttığı belirlenmiştir. Aynı zamanda CO ve HC emisyonları ortalama olarak sırası ile %1,29 ve %22,12 oranında azalmıştır. Fakat motorun aynı çalışma şartlarında NO ve is emisyonları ortalama olarak %14,90 ve %31,03 oranında artmıştır. Bununla birlikte özgül yakıt tüketimi düşmesine rağmen nanoparçacıklarının yüksek fiyatı nedeniyle birim efektif güç için yakıt maliyeti ortalama %116 oranında artmıştır.

Investigation of the usability of boron oxide nanoparticles as diesel fuel additive

In this study, the usability of the boron oxide (B2O3) nanoparticles as diesel fuel additive was experimentally investigated. Boron oxide nanoparticles were added to the diesel-biodiesel blend (B20) containing 20% by volume canola oil biodiesel at 50 ppm, 100 ppm, and 200 ppm concentrations by mechanical and ultrasonic mixing techniques. Some fuel properties of the prepared nano fuels were measured and then engine tests were carried out at standard engine settings. In these tests, the effect of boron oxide nanoparticles on combustion, performance, and emissions characteristics of the diesel engine was researched. In addition, a cost analysis was carried out depending on fuel price and specific fuel consumption. According to the results obtained, it was determined that boron oxide nanoparticles improve the cold flow properties of the fuel but increase the kinematic viscosity. It has been determined that boron oxide nanoparticles can be used at a concentration of 100 ppm in terms of high engine performance. It was ascertained that the specific fuel consumption of the engine decreased by 1.66% and the effective efficiency increased by 0.96% at this nanoparticle concentration. At the same time, CO and HC emissions decreased on average by 1.29% and 22.12%, respectively. But under the same engine operating conditions, NO and soot emissions increased by 14.90% and 31.03% on average. Though, the decrease in specific fuel consumption, the fuel cost per unit of effective power increased by 116% on average due to the high price of nanoparticles.

___

  • Referans 1: Soudagar, M. E. M., Nik-Ghazali, N.-N. N., Abul Kalam, M., Badruddin, I. A. A., Banapurmath, N. R. R., & Akram, N. (2018). The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Conversion and Management, 178, 146–177. https://doi.org/10.1016/J.ENCONMAN.2018.10.019.
  • Referans 2: Shaafi, T., Sairam, K., Gopinath, A., Kumaresan, G., & Velraj, R. (2015). Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—A review. Renewable and Sustainable Energy Reviews, 49, 563–573. https://doi.org/10.1016/J.RSER.2015.04.086
  • Referans 3: Hatami, M., Hasanpour, M., & Jing, D. (2020). Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part I: Nano-fuels. Journal of Molecular Liquids, 318, 114250. https://doi.org/https://doi.org/10.1016/j.molliq.2020.114250.
  • Referans 4: Gürmen, S., & Ebin, B. (2008). Nanopartiküller ve üretim yöntemleri-1. Metalurji Dergisi, 150, 31–38.
  • Referans 5: Liveri, V. T. (2006). Controlled synthesis of nanoparticles in microheterogeneous systems. Springer Science & Business Media.
  • Referans 6: Tripathi, R., Negi, P., Singh, Y., Ranjit, P. S., & Sharma, A. (2021). Role of nanoparticles as an additive to the biodiesel for the performance and emission analysis of diesel engine – A review. Materials Today: Proceedings, 46, 11222–11225. https://doi.org/10.1016/J.MATPR.2021.02.513
  • Referans 7: Bhan, S., Gautam, R., Singh, P., & Sharma, A. (2022). A Comprehensive Review of Performance, Combustion, and Emission Characteristics of Biodiesel Blend with Nanoparticles in Diesel Engines. Recent Trends in Thermal Engineering, 73–88.
  • Referans 8: Ahmed, A., Shah, A. N., Azam, A., Uddin, G. M., Ali, M. S., Hassan, S., Ahmed, H., & Aslam, T. (2020). Environment-friendly novel fuel additives: Investigation of the effects of graphite nanoparticles on performance and regulated gaseous emissions of CI engine. Energy Conversion and Management, 211, 112748. https://doi.org/10.1016/j.enconman.2020.112748
  • Referans 9: Sajith, V., Sobhan, C. B., & Peterson, G. P. (2010). Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel. Advances in Mechanical Engineering, 2, 581407. https://doi.org/10.1155/2010/581407
  • Referans 10: El-Seesy, A. I., Attia, A. M. A., & El-Batsh, H. M. (2018). The effect of Aluminum oxide nanoparticles addition with Jojoba methyl ester-diesel fuel blend on a diesel engine performance, combustion and emission characteristics. Fuel, 224, 147–166.
  • Referans 11: Chen, A. F., Akmal Adzmi, M., Adam, A., Othman, M. F., Kamaruzzaman, M. K., & Mrwan, A. G. (2018). Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energy Conversion and Management, 171, 461–477. https://doi.org/10.1016/j.enconman.2018.06.004
  • Referans 12: Saxena, V., Kumar, N., & Saxena, V. K. (2017). A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renewable and Sustainable Energy Reviews, 70, 563–588. https://doi.org/10.1016/j.rser.2016.11.067
  • Referans 13: Akıncıoğlu, G., Akıncıoğlu, S., Uygur, İ., & Ötkem, H. (2019). Alternatif katkı maddesi olarak kullanılan bor oksitin fren balatasının sürtünme davranışına etkisinin incelenmesi [Investigation of the effect of boron oxide on the friction behavior of brake pads as an alternative additive]. Bor Dergisi (Journal of Boron), 4(1), 1–6.
  • Referans 14: Eti Maden. (2019). Bor oksit ürün tekbik bilgi formu. https://www.etimaden.gov.tr/storage/uploads/2018/01/12-2017-Boron_Oxide_Glassy.pdf
  • Referans 15: Alizadeh, M., Sharifianjazi, F., Haghshenasjazi, E., Aghakhani, M., & Rajabi, L. (2015). Production of Nanosized Boron Oxide Powder by High-Energy Ball Milling. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(1), 11–14. https://doi.org/10.1080/15533174.2013.797438
  • Referans 16: Huang, Z., Wu, Q., Li, X., Shang, S., Dai, X., & Yin, Y. (2010). Synthesis and characterization of nano-sized boron powder prepared by plasma torch. Plasma Science and Technology, 12(5), 577–580. https://doi.org/10.1088/1009-0630/12/5/14
  • Referans 17: Ojha, P. K., & Karmakar, S. (2018). Boron for liquid fuel Engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects. Progress in Aerospace Sciences, 100, 18–45. https://doi.org/10.1016/j.paerosci.2018.05.003
  • Referans 18: Kuo, K. K., Risha, G. A., Evans, B. J., & Boyer, E. (2003). Potential usage of energetic nano-sized powders for combustion and rocket propulsion. Materials Research Society Symposium - Proceedings, 800(1), 3–14. https://doi.org/10.1557/proc-800-aa1.1
  • Referans 19: Çakmak, A., & Özcan, H. (2021). Gliserin Eterlerinin İkinici Nesil Biyoyakıt Olarak Dizel Motorunda Kullanımının araştırılması [Investigation of the usability of glycerol ethers as second-generation biofuel in diesel engine]. Isı Bilimi ve Tekniği Dergisi, 41(2), 191–204.
  • Referans 20: Holman, J. P. (2000). Experimental methods for engineers. New York: McGraw Hill Book. ISBN: 0-07-366055-8
  • Referans 21: Heywood, J. B. (1988). Internal combustion engine fundamentals. McGraw-Hill. ISBN: 0-07-100499-8
  • Referans 22: Stone, R. (1999). Introduction to internal combustion engines (3rd ed.). Macmillan Publishers Limited,Palgrave, London. https://doi.org/https://doi.org/10.1007/978-1-349-14916-2
  • Referans 23: Shehata, M. S. (2013). Emissions, performance and cylinder pressure of diesel engine fuelled by biodiesel fuel. Fuel, 112, 513–522. https://doi.org/https://doi.org/10.1016/j.fuel.2013.02.056
  • Referans 24: Zhang, Z., Lu, Y., Wang, Y., Yu, X., Smallbone, A., Dong, C., & Roskilly, A. P. (2019). Comparative study of using multi-wall carbon nanotube and two different sizes of cerium oxide nanopowders as fuel additives under various diesel engine conditions. Fuel, 256, 115904. https://doi.org/https://doi.org/10.1016/j.fuel.2019.115904
  • Referans 25: Zhang, Z.-H., & Balasubramanian, R. (2017). Effects of cerium oxide and ferrocene nanoparticles addition as fuel-borne catalysts on diesel engine particulate emissions: Environmental and health implications. Environmental Science \& Technology, 51(8), 4248–4258.
  • Referans 26: Elżbieta, D., Małgorzata, S., Pośniak, M., Andrzej, S., Bartosz, P., & Woodburn, J. (2020). Exhaust emissions from diesel engines fuelled by different blends with the addition of nanomodifiers and HVO. Environmental Pollution, 259.
  • Referans 27: Soudagar, M. E. M., Mujtaba, M. A., Safaei, M. R., Afzal, A., V, D. R., Ahmed, W., Banapurmath, N. R., Hossain, N., Bashir, S., Badruddin, I. A., Goodarzi, M., Shahapurkar, K., & Taqui, S. N. (2021). Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy, 215, 119094. https://doi.org/https://doi.org/10.1016/j.energy.2020.119094