Besleme suyu bileşiminin ve ön arıtmanın bora duyarlı mahsuller için sulama suyuna etkisi

Beşeri tüketim, endüstriyel kullanım veya sulama suyu eldesinde membran filtrasyon etkili bir yöntemdir. Bu çalışmada, jeotermal sudan sulama kalitesinde su elde etmek için acı su ters ozmoz membranının kullanılma potansiyeli irdelenmiştir. Bora duyarlı mahsullerin tarımsal sulanmasına uygunluğunu belirlemek amacıyla üretilen suyun kalitesi analiz edilmiştir. Bu çalışmada, besleme suyu bileşiminin ve mikrofiltrasyon ile ön arıtmanın etkileri incelenmiştir. Elde edilen sonuçlar, iyonik içeriğin süzüntü akısının azalmasında etkili olduğunu göstermiştir. Bununla birlikte, tuz ve silikanın alıkonulma oranı, besleme suyu bileşimindeki değişim ile önemli ölçüde değişmemiş ve jeotermal sudan % 95'in üzerinde bir giderim oranına ulaşılmıştır. Jeotermal suyun 0,8 µm gözenek boyutuna sahip bir mikrofiltrasyon membranı ile ön arıtılması, 5 µm gözenek boyutuna sahip olandan daha yüksek akı sağlamıştır. Yüksek seviyelerde bor giderimi ancak ön işlemde arttırılan pH ile elde edilebilmiştir. Jeotermal sudaki 9,5 pH seviyesi, 15 bar çalışma basıncı, 2,4 mg/L süzüntü bor derişimi ile % 75 oranında bor giderimini sağlamıştır. Sulama suyundaki bu bor derişiminin sadece bazı mahsuller için kullanılacak sulama suyunda uygun olduğu görülmüştür.

Effect of geothermal water composition and pretreatment on the product water for boron-sensitive crops

The membrane filtration is an effective way to produce water for human consumption, industrial use, or irrigation purpose. In this study, the potential of a brackish water reverse osmosis (BWRO) membrane was practically investigated to obtain water with irrigation quality from geothermal water. The quality of the produced water was analyzed to understand the applicability of water in the agricultural use for boron-sensitive crops. The effects of the feed solution composition and pretreatment by microfiltration were studied. Results showed that the ionic content was effective in reduction of permeate flux. However, the rejections of salt and silica did not change significantly by the change in the feed water composition and they were successfully removed from the geothermal water by more than 95% rejection. Pretreatment of the geothermal water with a microfiltration (MF) membrane having a pore-size of 0.8 µm provided higher flux than the one having a pore size of 5 µm. The higher rejections of boron were only achieved with increased pH in the pretreatment. The pH of 9.5 in the geothermal water provided a rejection of boron as 75% with a permeate boron concentration of 2.4 mg/L when 15 bar of operating pressure was employed. This level of boron concentration in the irrigation water was found to be allowable only for some boron resistant and semi-sensitive crops.

___

  • [1] Lew B., Tarnapolski O., Afgin Y., Portal Y., Ignat T., Yudachev V., Bick A., Irrigation with permeates to upgrade the quality of red pepper: a case study in Arava region, Israel, Environ. Technol. (United Kingdom), 1-11, 2020. doi:10.1080/21622515.2020.1784294.
  • [2] Samatya S., Köseoğlu P., Kabay N., Tuncel A., Yüksel M., Utilization of geothermal water as irrigation water after boron removal by monodisperse nanoporous polymers containing NMDG in sorption-ultrafiltration hybrid process, Desalination, 62-67, 2015. doi:10.1016/j.desal.2015.02.030.
  • [3] Koseoglu H., Harman B.I.I., Yigit N.O.O., Guler E., Kabay N., Kitis M., The effects of operating conditions on boron removal from geothermal waters by membrane processes, Desalination. 258, 72-78, 2010. doi:10.1016/j.desal.2010.03.043.
  • [4] Yilmaz A.E., Boncukcuoğlu R., Kocakerim M.M., Yilmaz M.T., Paluluoğlu C., Boron removal from geothermal waters by electrocoagulation, J. Hazard. Mater. 153 146–151, 2008. doi:10.1016/j.jhazmat.2007.08.030.
  • [5] Gallup D.L., Treatment of geothermal waters for production of industrial, agricultural or drinking water, Geothermics. 36 473–483, 2007. doi:10.1016/j.geothermics.2007.07.002.
  • [6] Öner Ş.G., Kabay N., Güler E., Kitiş M., Yüksel M., A comparative study for the removal of boron and silica from geothermal water by cross-flow flat sheet reverse osmosis method, Desalination, 10-15, 2011. doi:10.1016/j.desal.2011.02.038.
  • [7] Tomaszewska B., Szczepański A., Possibilities for the efficient utilisation of spent geothermal waters, Environ. Sci. Pollut. Res. 21 11409–11417, 2014. doi:10.1007/s11356-014-3076-4.
  • [8] Bick A., Gillerman L., Manor Y., Oron G., Economic assessment of an integrated membrane system for secondary effluent polishing for unrestricted reuse, Water (Switzerland), 219-236, 2012. doi:10.3390/w4010219.
  • [9] Ozturk O.F., Shukla M.K., Stringam B., Picchioni G.A., Gard C., Irrigation with brackish water changes evapotranspiration, growth and ion uptake of halophytes, Agric. Water Manag., 142-153, 2018. doi:10.1016/j.agwat.2017.10.012.
  • [10] Teychene B., Collet G., Gallard H., Croue J.P., A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes, Desalination., 109-114, 2013. doi:10.1016/j.desal.2012.05.034.
  • [11] Jung B., Kim C.Y., Jiao S., Rao U., Dudchenko A. V., Tester J., Jassby D., Enhancing boron rejection on electrically conducting reverse osmosis membranes through local electrochemical pH modification, Desalination., 114212, 2020. doi:10.1016/j.desal.2019.114212.
  • [12] Oo M.H., Ong S.L., Boron removal and zeta potential of RO membranes: impact of pH and salinity, Desalin. WATER Treat., 83-87, 2012. doi:10.5004/dwt.2012.2765.
  • [13] Oo M.H., Song L., Effect of pH and ionic strength on boron removal by RO membranes, Desalination. , 2009. 605-612, doi:10.1016/j.desal.2008.06.025.
  • [14] Ipek I.Y., Guler E., Kabay N., Yuksel M., Removal of Boron from Water by Ion Exchange and Hybrid Processes, in: Ion Exch. Solvent Extr., CRC Press, 33–63, 2016. doi:10.1201/b20021-2.
  • [15] Al-Shammiri M., Al-Saffar A., Bohamad S., Ahmed M., Waste water quality and reuse in irrigation in Kuwait using microfiltration technology in treatment, Desalination, 213-225, 2005. doi:10.1016/j.desal.2005.02.078.
  • [16] Al-Rehaili A.M., Comparative chemical clarification for silica removal from RO groundwater feed, Desalination. 159 21–31, 2003. doi:10.1016/S0011-9164(03)90042-7.
  • [17] Gorzalski A.S., Coronell O., Fouling of nanofiltration membranes in full- and bench-scale systems treating groundwater containing silica, J. Memb. Sci. 468 349–359, 2014. doi:10.1016/j.memsci.2014.06.013.
  • [18] Sheikholeslami R., Bright J., Silica and metals removal by pretreatment to prevent fouling of reverse osmosis membranes, Desalination. 143 255–267, 2002. doi:10.1016/S0011-9164(02)00264-3.
  • [19] Neofotistou E., Demadis K.D., Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: Fundamentals and applications in desalination systems, Desalination. 167 257–272, 2004. doi:10.1016/j.desal.2004.06.135.
  • [20] Ning R.Y., Discussion of silica speciation, fouling, control and maximum reduction, Desalination. 151 67–73, 2003. doi:10.1016/S0011-9164(02)00973-6.
  • [21] Park Y.-M., Yeon K.-M., Park C., Silica treatment technologies in reverse osmosis for industrial desalination: A review, Environ. Eng. Res. 25 819–829, 2020. doi:10.4491/eer.2019.353.
  • [22] Piyadasa C., Ridgway H.F., Yeager T.R., Stewart M.B., Pelekani C., Gray S.R., Orbell J.D., The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes - A review, Desalination. 418, 19–34, 2017. doi:10.1016/j.desal.2017.05.017.
  • [23] SUEZ eStore for Water Technologies & Solutions, (n.d.). https://estore.suezwatertechnologies.com/ (accessed December 13, 2020).
  • [24] Singh R., Hybrid Membrane Systems for Water Purification, 2005. doi:10.1016/B978-1-85617-442-8.X5000-3.
  • [25] M. Mulder, Basic Principles of Membrane Technology. Second edition., 1997.
  • [26] Wang Y.-N., Tang C.Y., Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes—The role of hydrodynamic conditions, solution chemistry, and membrane properties, J. Memb. Sci. 376 275–282, 2011. doi:10.1016/j.memsci.2011.04.036.
  • [27] Koo T., Lee Y.J., Sheikholeslami R., Silica fouling and cleaning of reverse osmosis membranes, Desalination. 139 43–56, 2001. doi:10.1016/S0011-9164(01)00293-4.
  • [28] Cengeloglu Y., Arslan G., Tor A., Kocak I., Dursun N., Removal of boron from water by using reverse osmosis, Sep. Purif. Technol. 64 141–146, 2008. doi:10.1016/j.seppur.2008.09.006.
  • [29] Yilmaz A.E., Boncukcuoǧlu R., Kocakerim M.M., A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution, J. Hazard. Mater. 149 475–481, 2007. doi:10.1016/j.jhazmat.2007.04.018.
  • [30] Pokrovsky O.S., Schott J., Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia), Chem. Geol. 190 141–179, 2002. doi:10.1016/S0009-2541(02)00115-8.
  • [31] Güler E., Kabay N., Yüksel M., Yiĝit N., Kitiş M., Bryjak M., Integrated solution for boron removal from seawater using RO process and sorption-membrane filtration hybrid method, J. Memb. Sci. 375, 249-257, 2011. doi:10.1016/j.memsci.2011.03.050.
  • [32] Kabay N., Güler E., Bryjak M., Boron in seawater and methods for its separation - A review, Desalination. 261, 212-217, 2010. doi:10.1016/j.desal.2010.05.033.
  • [33] Chen B., Li F., Zhao X., Boron removal with modified polyamide RO modules by cross‐linked glutaric dialdehyde grafting, J. Chem. Technol. Biotechnol., 2020. doi:10.1002/jctb.6561.
  • [34] Güler E., Kabay N., Yüksel M., Yavuz E., Yüksel Ü., A comparative study for boron removal from seawater by two types of polyamide thin film composite SWRO membranes, Desalination. 273, 81-84, 2011. doi:10.1016/j.desal.2010.10.045.
  • [35] Güler E., Öner Ş.G., Kabay N., Yüksel M., Effect of operational parameters for boron removal from geothermal water by reverse osmosis (RO) membranes, in: Int. Symp. Boron-BORON2019, 885–890, 2019.