Türkiye’nin farklı coğrafi bölgelerinden toplanan Tetranychus urticae popülasyonlarındaki gen akışı ve popülasyon yapıları

Tetranychus urticae Koch (Acari: Tetranychidae) 1000’den fazla konukçu bitkiden beslenebilen tahrip edici bir tarımsal zararlıdır. Bu aşırı polifag doğası, bu zararlının rastgele dağılmasına olanak sağlayabilmektedir. Popülasyon hareketi ve yapısı geniş alanlarda zararlı kontrolü programları dizayn edilmesinde çok önemli olmasına rağmen, Türkiye’de bu konuda gerçekleştirilmiş bir çalışma bulunmamaktadır. Bu çalışmada, farklı coğrafik bölgelerden toplanan T. urticae popülasyonları arasında sitokrom oksidaz c altünite I (COI) genine dayanarak genetik alt bölünme olmadığını göstermektedir (FST=0.090, p>0.05). Ayrıca, haplotip network ağ analizinde kümelenme yapısı olmaması bu sonucu desteklemektedir. Ancak, Karadeniz popülasyonlarının diğer popülasyonlar ile yüksek genetik farklılığa sahip olduğu gösterilmiştir. Bu durum, bölgenin sahip olduğu izole coğrafyasından, farklı iklim koşullarından ve örnekleme yapılan alanın sınırlı olmasından dolayı olabilir. Akdeniz Bölgesi popülasyonları ile Ege ve İç Anadolu Bölgesi popülasyonları arasında yüksek gen akışı belirlenmiştir. Coğrafyanın tek başına popülasyon yapısı ve genetik varyasyonu açıklamada yeterli olmadığı bilinmektedir. Bu nedenle, güncel ve tarihsel iklim verileri gibi diğer faktörler ileri gen akışı çalışmalarında birleştirilmelidir.

Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey

Tetranychus urticae Koch (Acari: Tetranychidae) is a devastating agricultural pest that can feed on more than 1000 host plants. This extremely polyphagous nature of this pest may allow random disperse of them. Although population movement and structure are of vital importance to design area-wide pest control programs, there is no such study focusing on this issue in Turkey. The present study showed that there was no genetic subdivision among T. urticae the populations collected from four geographic regions of Turkey (FST=0.090, p>0.05), based on cytochrome c oxidase subunit I (COI). In addition, the haplotype network supported these results since no clustering pattern was present. However, Black Sea populations had high genetic differentiation with other populations. This might be due to its isolated geography, different climate conditions, and limited sampling area. A high level of gene-flow between the Mediterranean and Aegean/Central Anatolian populations was determined. It is known that geography alone is not enough to explain population structure and genetic variation when excluding other ecological factors. Therefore, other factors such as current and historical climate data should be integrated to assess gene-flow in future studies.

___

  • Attia S., Grissa K.L., Lognay G., Bitume E., Hance T., Mailleux A.C., 2013. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. Journal of Pest Science, 86 (3), 361-386. https://doi.org/10.1007/s10340-013-0503-0
  • Beals M., Gross L., Harrell S., 2000. Population genetics: limits to adaptation. http://www.tiem.utk.edu/~gross/ bioed/bealsmodules/population_genetics.html
  • Bebber D.P., Holmes T., Gurr S.J., 2014. The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23(12), 1398-1407. https://doi.org/10.1111/geb.12214
  • Hussey N.W., Parr W.J., 1963. Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina, Tetranychidae). Entomologia Experimentalis et Applicata, 6 (3), 207-214. https://doi.org/10.1111/j.1570-7458.1963. tb00619.x
  • İnak E., Alpkent Y.N., Çobanoğlu S., Dermauw W., Van Leeuwen T., 2019. Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey. Experimental and Applied Acarology, 78 (3), 343-360.
  • İnak E., 2021. İç Anadolu bölgesindeki Tetranychid akarların (Acari: Tetranychidae) DNA barkodlaması ve Tetranychus urticae popülasyonlarının bazı akarisitlere karşı direnç durumlarının belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Basılmış Doktora Tezi, 91 s., Ankara.
  • İyigün C., Türkeş M., Batmaz İ., Yozgatligil C., Purutçuoğlu V., Koç E.K., Öztürk M.Z., 2013. Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and Applied Climatology, 114 (1), 95- 106. https://doi.org/10.1007/s00704-012-0823-7
  • Jin P.Y., Sun J.T., Chen L., Xue X.F., Hong X.Y., 2020. Geography alone cannot explain Tetranychus truncatus (Acari: Tetranychidae) population abundance and genetic diversity in the context of the center–periphery hypothesis. Heredity, 124 (2), 383-396. https://doi.org/10.1038/ s41437-019-0280-5
  • Katoh K., Rozewicki J., Yamada K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160-1166. https://doi.org/10.1093/bib/bbx108
  • Kennedy G.G., Smitley D.R., 1985. Dispersal. In spider mites, their biology, natural enemies and control, Vol. 1A, W. Helle, and M.W. Sabelis (Eds.), pp. 233–242. Elsevier, Amsterdam.
  • Leigh J.W., Bryant D., 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110-1116. https://doi. org/10.1111/2041-210X.12410
  • Mazzi D., Dorn S., 2012. Movement of insect pests in agricultural landscapes. Annals of Applied Biology, 160 (2), 97-113. https://doi.org/10.1111/j.1744-7348.2012.00533.x
  • Meirmans P.G., 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution, 60 (11), 2399-2402. https://doi. org/10.1111/j.0014-3820.2006.tb01874.x
  • Migeon A., Dorkeld F., 2021. Spider mites web: a comprehensive database for the Tetranychidae. Available from http://www1.montpellier.inra.fr/CBGP/spmweb (accession date: 20/07/2021)
  • Navajas M., Gutierrez J., Bonato O., BollandH.R., Mapangou-Divassa, S., 1994. Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Experimental and Applied Acarology, 18 (6), 351-360. https://doi.org/10.1007/BF00116316
  • Osakabe M.H., Isobe H., Kasai A., Masuda R., Kubota S., Umeda M., 2008. Aerodynamic advantages of upside down take-off for aerial dispersal in Tetranychus spider mites. Experimental and Applied Acarology, 44 (3), 165-183. https://doi.org/10.1007/s10493-008-9141-2
  • Ros V.I., Breeuwer J.A., 2007. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Experimental and Applied Acarology, 42 (4), 239-262. https://doi.org/10.1007/s10493- 007-9092-z
  • Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., GuiraoRico S., Librado P., Ramos-Onsins S. E., Sánchez-Gracia A., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34 (12), 3299-3302. https://doi.org/10.1093/molbev/msx248 Stinner R.E., Barfield C.S., Stimac J.L., Dohse L., 1983.
  • Dispersal and movement of insect pests. Annual Review of Entomology, 28 (1), 319-335. https://doi.org/10.1146/ annurev.en.28.010183.001535
  • Tsagkarakou A., Navajas M., Papaioannou-Souliotis P., Pasteur N., 1998. Gene flow among Tetranychus urticae (Acari: Tetranychidae) populations in Greece. Molecular Ecology, 7 (1), 71-79. https://doi.org/10.1046/j.1365- 294x.1998.00305.x
  • TsagkarakouA., Navajas M., Rousset F., Pasteur N., 1999. Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France. In: Bruin J., van der Geest L.P.S., Sabelis M.W. (Eds.) Ecology and Evolution of the Acari. Series Entomologica, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1343-6_12
  • Uesugi R., Sasawaki T. Osakabe M., 2009 Evidence of a high level of gene flow among apple trees in Tetranychus urticae. Experimental and Applied Acarology, 49, 281. https://doi. org/10.1007/s10493-009-9267-x
  • Van Leeuwen T., Vontas J., Tsagkarakou A., Tirry L., 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Biorational control of arthropod pests (pp. 347-393). Springer, Dordrecht.
  • Van Leeuwen T., Vontas J., Tsagkarakou A., Dermauw W., Tirry L., 2010. Acaricide resistance mechanisms in the twospotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochemistry and Molecular Biology, 40 (8), 563-572. https://doi.org/10.1016/j.ibmb.2010.05.008
  • Whitlock M.C., Mccauley D.E., 1999. Indirect measures of gene flow and migration: FST≠ 1/(4Nm+1). Heredity, 82 (2), 117-125. https://doi.org/10.1046/j.1365-2540.1999.00496.x
  • Wright S., 1965. The interpretation of population structure by F- statistics with special regard to systems of mating. Evolution, 19, 395–420. https://doi.org/10.2307/2406450
  • Wright S., 1978. Evolution and the genetics of populations, v. 4. variability within and among natural populations. University of Chicago Press, Chicago, 590 pp
  • Yucel C., 2021. Effects of local isolates of Beauveria bassiana (Balsamo) Vuillemin on the two-spotted spider mite, Tetranychus urticae (Koch)(Acari: Tetranychidae). Egyptian Journal of Biological Pest Control, 31 (1), 1-7. https://doi. org/10.1186/s41938-021-00409-2
  • Zhang Z.Q., 2003. Mites of greenhouses: identification, biology and control. CABI, Cambridge, p 244.