Biosorption of cadmium and copper by Aspergillus spp. isolated from industrial ceramic waste sludge

Under proper conditions, fungi can act as a good biosorbent for different heavy metals. In the present study, Aspergillus spp. have been isolated from ceramic industrial waste sludge and the tolerance of the fungi for copper and cadmium metals were examined. The experiments were carried out at 25 °C, pH=4-4.5 for Cu(II), pH=6 for Cd(II), biosorbent dose of 2.5 g, initial metal concentration of Cd (II) was 1 mM and Cu(II) was 5 mM. The removal efficiencies for cadmium and copper with two Aspergillus strains were found to be 90-95% and 85-90%, respectively. The sorption capacities of live and dead fungi for copper were 5.3676 mg g-1 , 18.661 mg g-1 and for cadmium were 0.1977 mg g-1 , 0.1772 mg g-1 respectively. FTIR analyses have showed that copper ions bound to vinyl compounds (950-900 cm-1 ) and cadmium ions bound to primer amides (1420-1400 cm-1 ), mostly. Considering biosorption results, Langmuir and Freundlich isotherm models have been described and it was clearly seen that none of the isotherm models have fitted the experimental data. The metal ion binding areas of the cell surface of fungi were determined by FTIR. SEM monitoring and EDX analysis were carried out. EDX results confirmed the biosorption of copper and cadmium.

Seramik endüstrisi arıtma çamurundan izole edilen Aspergillus spp. ile kadmiyum ve bakır biyosorbsiyonu

Küfler uygun koşullar altında farklı ağır metaller için iyi bir biyosorban olabilir. Bu çalışmada, seramik sanayi atık çamurlarından Aspergillus spp. izole edilmiş ve bakır ve kadmiyum metallerine toleransı incelenmiştir. Deneyler 25 °C’de biyosorban miktarı 2,5 g, Cu (II) için pH = 4-4,5, Cd (II) için pH = 6 ve başlangıç metal konsantrasyonu Cd (II) için 1 mM ve Cu (II) için 5 mM olarak yapılmıştır. İki Aspergillus suşunun kadmiyum ve bakırı uzaklaştırma etkinlikleri sırasıyla % 90-95 ve% 85-90 olarak bulunmuştur. Canlı ve ölü biyosorbanın bakır için emilim kapasiteleri sırasıyla 5,3676 mg g-1 , 18,661 mg g-1 ve kadmiyum için ise sırasıyla 0,1977 mg g-1 , 0,1772 mg g-1 olarak tespit edilmiştir. FTIR analizleri bakır iyonlarının vinil bileşiklere (950-900 cm-1 ) ve kadmiyum iyonlarının primer amidlere (1420-1400 cm-1 ) bağlandığını göstermiştir. Biyosorpsiyon sonuçları dikkate alındığında, Langmuir ve Freundlich izoterm modellerinden hiçbirinin deneysel verilere uymadığı açıkça görülmüştür. Hücre yüzeyinin metal iyon bağlama alanları FTIR ile belirlenmiştir. SEM izleme ve EDX analizi yapılmış, EDX sonuçları bakır ve kadmiyumun biyosorpsiyonunu doğrulamıştır.


Ziemacki, G., Viviano, G. & Merli F. (1989). Heavy metals: Sources and environmental presence. Annali dell'Istituto Superiore di Sanità, 25(3), 531-535.

Chandra, R., Bharagava, R.N., Yadav, S. & Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 162 (2-3), 1514-1521.

Akpor, O. B. & Muchie, M. (2010). Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. International Journal of Physical Science, 5(12), 1807-1817. national primary drinking water regulations (Accessed: September 2018)

Fomina, M. & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3-14.

Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., Haroon, H. & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater-A review. Journal of Hazardous Materials, 263, 322-333.

Chojnacka, K. (2010). Biosorption and bioaccumulation – the prospects for practical applications, Environment International, 36, 299-307.

Turhan, S., Arikan, I. H., Demirel, H. & Gungor, N. (2011) Radiometric analysis of raw materials and products in the turkish ceramics industry. Radiation Physics and Chemistry, 80 (5), 620-625.

Monfort, E., Mezquita, A., Vaquer, E., Celades, I., Sanfelix, V. & Escrig, A. (2014). Ceramic manufacturing processes: energy, environmental, and occupational health issues. Comprehensive Materials Processing, 8, 71-102.

Dincer, A. R. & Kargi, F. (2000). Seramik endüstrisi atıksularının özellikleri ve biyolojik arıtılabilirliği, Çevre Bilim&Teknoloji 1(1), 24-28.

Sepehr, M.N., Zarrabi, M. & Amrane, A. (2011). Removal of Cr(III) from model solutions by isolated Aspergillus niger and Aspergillus oryzae living microorganisms: Equilibrium and kinetic studies, Journal of Taiwan Institute of Chemical Engineers, 43(3), 420-427. (Accessed: March 2017).

Piotrowska-Seget, Z., Cycon, M. & Kozdroj, J. (2005). Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Applied Soil Ecology, 28(3), 237-246.

Klich, M.A. (2002). İdentification of common Aspergillus species. Centraalbureau voor Schimmelcultures. Ulrecht, Netherlands.

Dugan, F.M. (2006). The identification of fungi: an illustrated introduction with keys, glossary and guide to literature. American Phytopathological Society. St. Paul, Minnesota.

Watanabe, T. (2010). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC Press/Taylor & Francis. Boca Raton.

Flannigan, B., Samson, R. A. & Miller, J. D. (2011). Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control. Taylor&Francis. Boca Raton, Florida.

Zafar, S., Aqil, F. & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98(13), 2557-2561.

Cerino-Cordova, F. J., Garcia-Leon, A. M., Soto-Regalado, E., Sanchez-Gonzalez, M. N., Lozano Ramirez, T., Garcia-Avalos, B. C. & Loredo-Medrano, J. A. (2012). Experimental design for the optimization of copper biosorption from aqueous solution by Aspergillus terreus. Journal of Environmental Management, 95, 77-82.

Subbaiah, M. V., Yuvaraja, G., Vijaya, Y. & Krishnaiah, A. (2011). Equilibrium, kinetic and thermodynamic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by fungus (Trametes versicolor) biomass. Journal of the Taiwan Institute Chemical Engineers, 42(6), 965-971.

Tay, T. & Keçili, R. (2016). Removal of Acid Blue 294 (AB294) dye from aqueous solutions by using lichen Umbilicaria decussata biomass, Biological Diversity and Conservation, 9/3, 189-197. (Accessed: September 2018). ceramic-materials-and-theiruses/ (Accessed: October 2018).

Ujile, A. A. & Joel, O. F. (2013). Adsorption process of iron(III) from borehole water on activated carbon from nigerian bamboo. International Journal of Engineering Science and Technology, 5(6), 1321-1331.

Karthikeyan, G., Muthulakshmi, A. N. & Anbalagan, K. (2005). Adsorption studies of iron (III) on chitin, Indian Academy of Sciences, 117(6), 663-672.

Dange, S.S. & Dhoble, R.M. (2017). Iron Removal by Adsorption-A review, International Journal of Science Technology & Engineering, 3 (9), 603-606.

Hoyland, V. W., Knocke, W. R., Falkinham, J. O. 3rd., Pruden, A. & Singh, G. (2014). Effect of drinking water treatment process parameters on biological removal of manganese from surface water. Water Research, 66, 31-39.

Mishra, A. & Malik, A. (2012). Simultaneous bioaccumulation of multiple metal from electro plating effluent using Aspergillus lentulus. Water Research, 46, 4991-4998.

Gola, D., Dey, P., Bhattacharya, A., Mishra, A., Malik ,A., Namburath, M. & Ahammad, S.Z. (2016). Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresource Technology, 218, 388-396.

Wang, J. Y. & Cui, C. (2017). Characterization of the biosorption properties of dormant spores of Aspergillus niger: A potential breakthrough agent for removing Cu2+ from contaminated water. RSC Advances, 7, 14069–14077.

Chakraborty, S., Mukherjee, A., Khuda-Bukhsh, A.R. & Das, T.K. (2014). Cadmium induced oxidative stress tolerance in cadmium resistant Aspergillus foetidus: Its possible role in cadmium bioremediation. Ecotoxicology and Environmental Safety, 106, 46-53.

Li, C., Jiang, W., Ma, N., Zhu, Y., Dong, X., Wang, D., Meng, X. & Xu, Y. (2014). Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresource Technology, 155, 116-121.

Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B. & Guven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152(1), 195- 206.

Chakravarty, R. & Banerjee, P.C. (2012). Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresource Technology, 108, 176-183.

Abdel-Aty, A. M., Ammar, N. S., Abdel Ghafar, H. H. & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solutions by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research, 4(4), 367-374.

Wang, J. Y., Cui, H., Cui, C. W. & Xing, D. F. (2016). Biosorption of copper(II) from aqueous solutions by Aspergillus niger treated rice straw. Ecological Engineering, 95, 793-799.

Amirnia, S., Ray, M. B. and Margaritis, A. (2015). Heavy metals removal from aqueous solutions using saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chemical Engineering Journal, 264, 863-872.

Zeng, X., Chai, L., Tang, J., Liu, X. & Yang, Z. (2013). Taxonomy characterization and cadmium biosorption of fungus strain. Transactions of Nonferrous Metals Society of China, 23, 2759-2765.

Ahmad, M. F., Haydar, S., Bhatti, A. A. & Bari, A. J. (2014). Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Biochemical Engineering Journal, 84, 83-90.

Liu, Y., Liao, T., He, Z., Li, T., Wang, H., Hu, X., Guo, Y. & He, Y. (2013). Biosorption of copper (II) from aqueous solution by Bacillus subtilis Cells immobilized into chitosan beads. Transactions of Nonferrous Metals Society of China, 23(6), 1804-1814.

Puyen, Z. M., Villagrasa, E., Maldonado, J., Diestra, E., Esteve, I. & Sole, A. (2012). Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresource Technology, 126, 233-237.

Say, R., Denizli, A. & Arica, M. Y. (2001). Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology, 76, 67-70.

Di Caprio, F., Altimari, P., Uccelletti, D. & Pagnanelli, F. (2014). Mechanistic modelling of copper biosorption by wild type and engineered Saccharomyces cerevisiae biomasses, Chemical Engineering Journal, 244, 561-568.

Shuhong, Y., Meiping, Z., Hong, Y., Han, W., Shan, X., Yan, L. & Jihui, W. (2014). Biosorption of Cu2+ , Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydrate Polymers, 101(1), 50-56.

Wang, J. (2002). Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae, Process Biochemistry, 37(8), 847-850.

Kaynak Göster

257 125

Sayıdaki Diğer Makaleler

Amylase Production of Bacillus subtilis Isolated from Soil by SmF Method


Analysis of genomic stability and DNA damage in plants exposed to cement dust pollution using the RAPD analysis


Contributions to the records of Dysmachus praemorsus (Loew, 1854) (Diptera, Asilidae) in Turkey and some notes on ıts seasonal activitiy


Nest characteristics of Egyptian vulture (Neophron percnopterus) in Middle and Upper Sakarya Region, Turkey


Synthesis of some new derivatives of tick pheromones and investigation of pheromone properties


Isolation, Identification and Evaluation of Enzyme Production Capacity of CGTase Producing Bacteria from Lakes Salda and Van/Turkey


Antioxidative effects of tannic acid, cacao oil and st. john’s wort oil on the oxidative stress induced by cadmium in packed human erythrocytes


Biosorption of cadmium and copper by Aspergillus spp. isolated from industrial ceramic waste sludge


Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies removal of silver from aqueous solution by the Mint extract


One health approach to decreasing biodiversity and the problem of emerging zoonotic diseases