UZUNAYAK MADENCİLİĞİNDE ANA TAVAN YÜKLEMESİNİN YALANCI TAVAN KIRILMA MESAFESİ ÜZERİNE ETKİLERİNİN İNCELENMESİ

Uzunayak madenciliğinde yalancı tavan göçertilmesinin etkin bir tabaka kontrolünün sağlanması açısından önemli olduğu bilinmektedir. Tavan tabakalarının jeomekanik özelliklerinden etkilenen yalancı tavan kırılmasında dikkat edilmesi gereken bir diğer önemli husus ise ana tavan yüklemesidir. Ana tavanın nasıl ve hangi oranda yalancı tavan üzerine etkidiği tam olarak ortaya konulamamaktadır. Bu çalışmada yalancı tavan kırılma mesafesinin kestirilmesini amaçlayan önemli yaklaşımlar özetlenmiştir. Yalancı tavan üzerine farklı kalınlıkta ve üçgen yayılı yükleme koşullarında etkiyen ana tavanın yalancı tavanın kırılma mesafesi üzerine etkisi elastik kiriş teorisine göre incelenmiştir. Kiriş teorisi kullanılarak gerçekleştirilen parametrik analizlerden elde edilen sonuçlar Zonguldak Taşkömürü Havzası’nda yer alan altı adet uzunayaktan elde edilen ayak arkası kırılma mesafesi değerleri ile karşılaştırılmıştır. Sonuç olarak ana tavan yüklemesinin yalancı tavanın kırılma mesafesi üzerine önemli etkileri olduğu görülmüştür

Investigation of the Effects of Main Roof Loading on the Breaking Distance of the Immediate Roof in Longwall Mining

As known from the previous studies that the cavability of immediate roof is important to maintain an effective strata control. The other issue should be paid attention in breaking of immediate roof affected by geomechanical properties of roof strata, is the main roof loading. It is not accurately revealed how and to what extent main roof acts on the immediate roof. Important approximations aiming to estimate the breaking distance of immediate roof are summarized in this study. The effect of main roof acting upon the immediate roof with different thickness and triangular distributed loading conditions is investigated according to elastic beam theory. The results obtained from parametrical analysis using beam theory are compared to the breaking distance values of six longwalls located in Zonguldak Hard coal Basin. In conclusion, significant effects of main roof loading are seen for the breaking distance of immediate roof

___

  • Alpan S (1969) Maden İşletme Metotları, Maden Tetkik ve Arama Enstitüsü Yayınları, Yayın No: 2, 21.
  • Barczak, T.M. and Gearhart, D.F. (1993). Engineering methods for the design and employment of wood cribs. Proceedings of the 12th Conference on Ground Control in Mining, Morgantown, WV, pp. 47-54.
  • Bieniawski Z.T. (1989), Engineering Rock Mass Classification. pp. 51-64
  • Bilinski A. and Konopko W. (1973) Criteria of the Selection of Individual and Mechanized Support Schemes for Longwall Workings (in Polish), Przeglad : pp 241-244.
  • Bilir, M. E. (1994) TTK Asma İşletmesinde Hidrolik Direk-Eklemli Çelik Sarma Uygulamalarının Yük ve Konverjans Ölçümleriyle İncelenmesi, Yüksek Lisans Tezi (yayımlanmamış), Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, 161s.
  • Birön C. ve Arıoğlu E (1999) Madenlerde Tahkimat İşleri ve Tasarımı, Birsen Yayınevi, İstanbul, 361s.
  • Das, S. K. (2000) Observations and Classification of Roof Strata Behaviour over Longwall Coal Mining Panels in India, Int. J. Rock Mech. Min. Sci., 37 : pp 597.
  • Everling, G. (1985) Der Einfluß der Strebbreite auf die Hangendbeherrschung, Glickauf Forschunghefte.
  • Farmer I., Gupta R. N. (1993) Geotechnical design aspects of longwall caving in difficult conditions. J. Min. Res.;4: pp 25-32.
  • Gerçek, H. (2002). Hoek-Brown ölçütünün tanımladığı yenilme zarfları ve yüzeylerinin özellikleri. KAYAMEK VI. Bölgesel Kaya Mekaniği Sempozyumu Bildiriler Kitabı, C. Şensöğüt ve İ. Özkan (ed.), T.U.K.M.D. ve S.Ü Maden Müh. Bölümü, Konya, s. 3-10.
  • Ghose A., K. (1976) Design of Longwall Systems for Future Longwall Faces, Journal of Mines Metals and Fuels of India, Special Number on Mine Support.
  • Gökçeoğlu C., Sönmez H. and Kayabaşı A. (2003). Predicting the Defomation Modulii of Rock Masses, Int. J. Rock Mech. Min. Sci. 40: pp 703-712.
  • Hoek E., Carranza-Torres C. T. and Corkum B. (2002). Hoek-Brown failure criterion - 2002 edition, Proc. of the 5th North American Rock Mech. Symp. and 17th
  • Tunnelling Assoc. of Canada Conf., Toronto, Canada, pp 267-273.
  • Hoek E. and Diedrichs M. S. (2006). Empirical Estimation of Rock Mass Modulus, Int. J. Rock. Mech.
  • Min. Sci. 36: pp 203-215.
  • Hongzhu Z. (1996) Ground Pressure Characteristic and Selection of Hydraulic Supports in Fully
  • Mechanized Longwall Face in China, Second Nat. Conf. on Ground Control in Mining, pp 57-78.
  • Hongzhu Z. and Ramayya M. S. V. (1996) Strata Movement on Shallow Fully Mechanized Longwall Face at PVK Mine of SCCL and Option of Powered Support, Second Nat. Conf. on Ground Control in Mining, pp 79-98.
  • Hosseini N., Oraee K., Shahriar K. and Goshtasbi K. (2013). Studying the stress redistribution around the longwall mining panel using passive seismic velocity tomography and geostatistical estimation, Arab. J. Geosci. 6: pp 1407-1416.
  • Jacobi O (1981) Praxis der Gebirsbeherrschung, 2. Auflage, Essen, 576p.
  • Jeremic M L (1985) Strata Mechanics in Coal Mining, A.A. Balkema, 564p.
  • Kai, W., (2011), Study of Reasonable Hanging Roof Length on Hard Roof, Procedia Engineering 26: pp - 777
  • Kayabaşı A., Gökçeoğlu C. and Ercanoğlu M. (2003). Estimating the Deformation Modulus of Rock Masses : a Comperative Study, Int. J. Rock Mech. Min. Sci. : pp 55-63.
  • Kelly M., Luo X. And Craig S., (2002) Integrating tools for longwall geomechanics assessment, Int. J. Rock Mech. Min. Sci., 39: pp 661-676.
  • Kim B. H., Yang H. S. and Chung S. K. (2003). Revaluation of rock mass classification using multivariate analysis and estimation of tunnel support. Proceedings: ISRM 2003 - Technology road map for rock mechanics. South African Institute of Mining and Metallurgy, pp. 645-648.
  • Kratzsch H. (1983) Mining Subsidence Engineering. Springer, Berlin Heidelberg. New York
  • Köken E. (2013). Zonguldak Havzası Uzunayaklari için Bir Göçebilirlik Sınıflamasının Geliştirilmesi, Yüksek Lisans Tezi (yayımlanmamış), B.E.Ü. Fen Bilimleri Enst., 205s.
  • Köken E. (2014). Zonguldak Taşkömürü Havzası Uzunayakları için Bir Tavan Göçebilirlik Sınıflamasının Geliştirilmesi, Madencilik, Cilt: 53, Sayı: 1-2, 3-20.
  • Laubscher D. H. (1990) A Geomechanics Classification System for the Rating of Rock Mass in Mine Design, J. South Afr. Inst. Min. Metall. 90: pp 257-273.
  • Lawrence, W. (2009) A method for the design of longwall gateroad roof support, Int. J. Rock Mech. & Min. Sci. 46 pp 789-795.
  • Lihpin, Y.I. and Zoubkov A.Z. (1990) Simulation and in-situ study of rock behaviour around mining opening approaching to a tectonic discontinuity, Rock Joints, Barton&Stephasson (eds), Balkema, pp 455 - 473.
  • Manteghi H., Shahriar K., and Torabi T.,(2012). Numerical modelling for estimation of first weighting distance in longwall coal mining - A case study, 12th Coal Operators' Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, pp. 60-68.
  • Majdi A., Hassani F. P., Nasiri M. Y., (2012) Prediction of the Height of Destressed Zone above the Mined
  • Panel Roof in Longwall Coal Mining, Int. J. Coal Geology, 98: pp 62-72.
  • Mark C. and Molinda G. M., (2003). The Coal Mine Roof Rating in Mining Engineering Practice, Proc. of the Fourth Under. Coal Operators Conf., ed. Aziz N, Kininmonth B, Carlton, Victoria, Australia: Australian Institute of Mining And Metallurgy.
  • Majumdar, S., (1986). The support requirements at a longwall face - a bending moment approach, In Proceedings of the rock mechanics: key to energy production: 27th US symposium on rock mechanics, The University of Alabama, Tuscaloosa, Alabama; June. pp. 325-332.
  • Mitri H. S., Edrissi R. and Henning J. (1994). Finite Element Modelling of Cable Bolted Stopes in Hardrock Ground Mines, SME Annual Meeting, pp 94-116. New Mexico.
  • Nicholson G. A. and Bieniawaski Z. T., (1990). A Nonlinear Deformation Modulus Based on Rock Mass Classification, Int. J. Min. Geol. Eng. 8: pp 181-202.
  • Noroozi A, Oraee K, Javadi M and Goshtasbi K (2012) A Model for Determining the Breaking Characteristics of Immediate Roof in Longwall Mining, Yerbilimleri, : pp 193-204.
  • Özel R. (1995) Development of guidelines for selection of longwall shield supports, Doktora Tezi (yayımlanmamış), ODTÜ / FBE Enst., 245s.
  • Palchik, V., (2003). Formation of Fractured Zones in Overburden due to Longwall Mining. Environ. Geol. , 28-38.
  • Paşamehmetoğlu A. G. ve Bilgin H. A. (1989) Ara rapor 1: Galerilerde Optimum patlatma düzeninin saptanması, TTK Genel Müdürlüğü Asma İşletmesi Kömür ve Kayalarının Kaya Mekaniği ve Dizayn Parametrelerinin Çıkartılmasının Araştırılması, Proje No. 88-03-05-01-04, Ankara
  • Peng, S. S., Chiang, H. S., (1984). John, Wiley and Sons,. Longwall Mining.
  • Peng, S. S., (1986). Coal Mine Ground Control, 2nd ed., West Virginia University.
  • Ragan, D.M. (2009). Structural Geology : An Introduction to Geometrical Techniques, 4th Edition, Cambirdge Uni. Press, 632p.
  • Ramamurthy T. (2004). A Geo-Engineering Classification for Rocks and Rock Masses, Int. J. Rock. Mec. and Min. Sci. 41: pp 89-201.
  • Salamon M.D.G., (1990). Mechanism of caving in longwall mining. In: Hustrulid W, Johnson G, editors. Proceedings of the 31st US rock mechanical symposium, Golden, Colorado. Rotterdam: Balkema; pp 161-68.
  • Shen J., Karakus M. and Xu C. (2012). A comparative study for empirical equations in estimating deformation modulus of rock masses. Tunnel. and Underground Space Tech. 32: pp 245-250.
  • Singh R. and Singh T. N., (1999). Investigation into the Behaviour of A Support System and Roof During Sublevel Caving of A Thick Coal Seam, Geotech.and Geol. Eng., 17: pp 21-35.
  • Sönmez H., Gökçeoğlu C. and Ulusay R. (2004). Indirect Determination of The Modulus of Deformation of Rock Masses based on GSI System, Int. J. Rock Mech. Min. Sci. 41: pp 849-857.
  • Sönmez H., Nefeslioğlu H. A., Gökçeoğlu C., Kayabaşı A. (2006). Estimation of Rock Modulus for Intact Rocks with an Artifical Neural Network and for Rock Masses with A New Empirical Equation, Int. J. Rock Mech. Min. Sci. 43: pp 224 - 235.
  • Sweby G. (1997) Review thystems and determine the effect of the mechanism on the safety of the system, Project No : COL - 327, GSIRO MININGTEK.
  • TTK (2013) Türkiye Taşkömürü Kurumu Plan Büroları Arşivleri (Üzülmez, Kozlu ve Gelik Müesseseleri).
  • Ulusay R. ve Sönmez H. (2007). Kaya Kütlelerinin Mühendislik Özellikleri, JMO Yayınları, 292s.
  • Ünal E. (1995). Modified Rock Mass Classification M-RMR System, Milstones in Rock Engineering, The Bieniawski's Jubilee Collection, A A Balkema, pp. 203-223
  • Ünlü T. (1989). Üzülmez Müessesesi Asma İşletmesi Sulu Ayakta Yapılan Yük ve Konverjans Ölçümleri İle Ölçüm Sonuçlarının Değerlendirilmesi, Yüksek Mühendislik Tezi (yayımlanmamış), Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Zonguldak, 129s.
  • Ünlü T. ve Gerçek H. (2000). Ahşap Domuzdamlarının Mekanik Davranışı ve Tasarımı, Türkiye 12. Kömür Kongresi Bildiriler Kitabı, Kdz. Ereğli, Zonguldak, pp 53.
  • Unrug K. ,F. (1983) Longwall Support Requirements, Journal of Mines Metal and Fuels of India, Special Number on Updates on Longwall Mining-Evolving Trends.
  • Venkateswarlu V., Ghose A. K. and Raju N. M., (1989). Rock Mass Classification for Design of Roof Supports - A Statistical Evaluation Of Parameters, Min. Sci. And Tech.,pp 97-107.
  • Whittaker B. N. and Jeremic M. L., (1979). Longwall Mining Potential of Plains, Region of Coal Deposits in Western Canada Colliery, Guar. Coal Int., pp 31-39.
  • ZEDEM (1994). Establishment of an Industrial Support Centre in Zonguldak, Final Report, 104 p.
  • Zhang L. and Einstein H. H. (2004). Using RQD to Estimate the Deformation Modulus of Rock Masses, Int. J. of Rock Mech. Min. Sci. 41: pp 337-341.
  • Zhou, Y, (1991). Evaluating the impact of multi-seam mining on recoverable coal reserves in an adjacent seam, Virginia Division of Mineral Resources, Commonwealth of Virginia, Department of Mines, Minerals and Energy, Publication, 104.