TÜRK TERMİK SANTRALLERİNDEN İKİ FARKLI UÇUCU KÜL KULLANARAK ALKALİ YAKMA METODUYLA ZEOLİT SENTEZİ

Bu çalışmada, Sugözü termik santrali uçucu küllerinden sonrasında su liçi ile desteklenen bazik füzyon tekniği kullanılarak fojasit (Na-LSX) (3.5(Ca0.3)3.5(Na0.6)3.5(Mg0.1)Al7Si17O48•32(H2O)) türü, Çatalağzı uçucu küllerinden ise aynı tekniği kullanarak Ca-Filipsit (CaK0.6Na0.4Si5.2Al2.8O16•6(H2O)) türü zeolitler sentezlenmiştir. Bu yöntemlerde öncelikle yüksek sıcaklıkta kül fırınında uçucu küller ve sodyum hidroksit (NaOH) belirli oranlarda karıştırılarak 600 °C’de sinterlenmiş sonrasında öğütülen malzemelerden saf suda liç işlemi ile zeolitler elde edilmiştir. Katyon Değiştirme Kapasitesi (KDK), X-Işını Kırınımı (XRD), Taramalı Elektron Mikroskobu (SEM), Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR), X-Işını Fluoresans (XRF) ve Atomik Adsorpsiyon Spektrometresi (AAS) analizleri ile sentezlenen zeolitler karakterize edilmiştir. Sugözü uçucu külleri ile (1:2 oranda) sentezlenen zeolitler 136,93 meq/100 g KDK’ne sahipken aynı oranda Çatalağzı uçucu külleri ile sentezlenen zeolitlerin 247,88 meq/100 g KDK’ne sahip oldukları belirlenmiştir. Sonuç olarak F sınıfı 2 ayrı uçucu kül kullanarak atıksu arıtıcı, enerji depolayıcı, katalist ve separator olarak kullanılabilecek zeolitler sentezlenmiştir.

ZEOLITE SYNTHESIS BY ALKALI FUSION METHOD USING TWO DIFFERENT FLY ASHES DERIVED FROM TURKISH THERMAL POWER PLANTS

In this study, Faujasite (Na-LSX) (3.5(Ca0.3)3.5(Na0.6)3.5(Mg0.1)Al7Si17O48•32(H2O)) type zeolites and Ca-Filipsite (CaK0.6Na0.4Si5.2Al2.8O16•6(H2O)) type zeolites were produced from Sugözü Thermal Power Plant and Çatalağzı Thermal Power Plant fly ashes by alkali fusion method followed by water leaching, respectively. In these methods, fly ashes and sodium hydroxide (NaOH) were mixed in certain proportions and sintered at 600 °C in ash furnace. Then, zeolites were obtained from the ground materials after water leaching and solid/liquid separation, respectively. Cation Exchange Capacity (CEC), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-Ray Fluorescence (XRF) and Atomic Absorption Spectrometer (AAS) analyses were used to characterize the synthesized zeolites. The zeolites synthesized with Sugözü fly ashes in a ratio of 1:2 had 136.93 meq/100 g CEC, whereas the CEC of synthesized zeolite from Çatalağzı fly ashes was found to be 247.88 meq/100 g. As a result, zeolites, which can be used as wastewater treatment agent, energy storage material, catalyst and separator, were synthesized by using 2 different Class F fly ash.

___

  • ASTM C618-17a, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2017, www.astm.org.
  • Bukhari, S. S., Behin, J., Kazemian, H., Rohani, S., 2015. Conversion of Coal Fly Ash to Zeolite Utilizing Microwave and Ultrasound Energies: A Review. Fuel, 140, 250-266.
  • Cardoso, A. M., Paprocki, A., Perret, L. S., Azevedo, C. M. N., Pires, M., 2015. Synthesis of Zeolite Na-P1 Under Mild Conditions Using Brazilian Coal Fly Ash and its Application in Wastewater Treatment. Fuel, 139, 59-67.
  • Chumee, J., 2013. Enhanced Quality of Zeolite LSX: Studying Effect of Crystallized Containers. International Journal of Chemical and Molecular Engineering, 7 (1), 6-8.
  • Gottardi, G., 1978. Mineralogy and Crystal Chemistry of Zeolites. Natural Zeolites: Occurrence, Properties, Use. Ed. Sand, L.B., Mumpton, F.A., Pergamon Press, 31-44.
  • Grela, A., Hebda, M., Lach, M., Mikula, J., 2016. Thermal Behavior and Physical Characteristics of Synthetic Zeolite from CFB-Coal Fly Ash. Microporous and Mesoporous Materials, 220, 155-162.
  • Ikeda, T., Nakano, T., Nozue, Y., 2014. Crystal Structures of Heavily Na-Loaded Low-Silica X (LSX) Zeolites in Insulating and Metallic States. The Journal of Physical Chemistry C, 118, 23202-23211.
  • Jha, B., Singh, D. N., 2016. Basics of Zeolites. Advanced Structured Materials, 78, 5-31.
  • Khemthong, P., Prayoonpokarach, S. Wittayakun, J., 2007. Synthesis and Characterization of Zeolite Lsx from Rice Husk Silica. Suranaree Journal of Science and Technology, 14 (4), 367-379.
  • Lee, Y., Soe, J. T., Zhang, S., Ahn, J. W., Park, M. B., Ahn., W., 2017. Synthesis of Nanoporous Materials Via Recycling Coal Fly Ash and Other Solid Wastes: A Mini Review. Chemical Engineering Journal, 317, 821–843.
  • Ma, R., Zhu, J., Wu, B., Li, X., 2016. Adsorptive Removal of Organic Chloride from Model Jet Fuel by Na-LSX Zeolite: Kinetic, Equilibrium and Thermodynamic Studies. Chemical Engineering Research and Design, 114, 321-330.
  • Top, S., Vapur, H., Ekicibil, A., 2018. Characterization of Zeolites Synthesized from Porous Wastes Using Hydrothermal Agitational Leaching Assisted by Magnetic Separation. Journal of Molecular Structure, 1163, 4-9.
  • Vandermeersch, T., Assche, T. R. V. C., Denayer, J. F. M., Malsche, W. D., 2016. A Continuous Flow Reactor Setup as a Tool for Rapid Synthesis of Micron Sized NaA Zeolite. Microporous and Mesoporous Materials, 226, 133-139.
  • Wdowin, M., Franus, M., Panek, R., Badura, L., Franus, W., 2014. The Conversion Technology of Fly Ash into Zeolites. Clean Technologies and Environmental Policy, 16 (6), 1217-1223.
  • Xu, R., Pang, W., Yu, J., Huo, Q., Chen J. 2007. Chemistry of Zeolites and Related Porous Materials - Synthesis and Structure. New York, NY: Wiley, pp. 10-40.
  • Zhang, K., Ostraat, M. L., 2016. Innovations in Hierarchical Zeolite Synthesis. Catalysis Today, 264, 3–15.