İHA Fotogrametrisine Genel Bakış: Geleneksel Topoğrafik Harita Yapımı Tekniği ile Maliyet Karşılaştırması

Teknolojinin gelişmesine paralel olarak fotogrametri alanında da hızlı gelişmeler olmakta, gittikçe kısalan zaman dilimleri içinde yeni metotlar gelişmektedir. Bu gelişmeler resim çekim teknikleri ve resimlerin değerlendirme teknikleriyle kendini göstermiştir. Son zamanlarda İnsansız hava araçları (İHA) fotogrametrik değerlendirme sürecinde kendine yer bulmuştur. Buna bağlı olarak da İHA fotogrametrisi literatürde adını sıkça duyurmaya başlamıştır. Bu çalışmada İHA fotogrametrisinin çalışma mantığı, doğruluk analizi ve maliyet analizi üzerinde durulmuştur. Geleneksel yöntemler ile maliyet açısından karşılaştırılmıştır. Gerek zaman ve maliyet tasarrufu açısından, gerekse doğruluk ve görsellik açısından İHA fotogrametrisinin mühendislik projelerinde etkin olarak kullanılabileceği görülmüştür.

Overview of UAV Photogrammetry: Cost Comparison with Traditional Topographic Mapping Technique

In parallel with the development of technology, rapid developments are taking place in the field of photogrammetry, and new methods are developed in shorter time frames. These developments showed themselves with the taking picture technique and the evaluation techniques of the pictures. Recently, unmanned aerial vehicles (UAV) have found a place in the photogrammetric evaluation process. Accordingly, UAV photogrammetry has begun to make a name for itself in the literature. In this study, the logic of UAV photogrammetry, accuracy analysis and cost analysis are emphasized. It was compared with traditional methods in terms of cost. It was that UAV photogrammetry can be used effectively in engineering projects in terms of time and cost savings, accuracy, and visuality.

___

  • [1] Ahmad, A. & Chandler, J. H. (1999). Photogrammetric Capabilities of the Kodak DC40, DCS420 and DCS460 Digital Cameras, Photogrammetric Record, 16 (94), 601–615.
  • [2] Habib, A., Shan, J. & Toth, C. K. (2009). Accuracy, quality assurance, and quality control of LiDAR data. Topographic Laser Ranging and Scanning: Principles and Processing, 269-94.
  • [3] Salleh, M. R. M., Ismail, Z. & Rahman, M. Z. A. (2015). Accuracy assessment of lidar-derived digital terrain model (DTM) with different slope and canopy cover in tropical forest region. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(2), 183.
  • [4] Torge, W. & Müller, J. (2012). Geodesy, 3rd ed;Walter de Gruyter: New York, NY, USA
  • [5] Erol, S. & Erol, B. (2021). A comparative assessment of different interpolation algorithms for prediction of GNSS/levelling geoid surface using scattered control data. Measurement, 173, 108623.
  • [6] Wang, Y. M., Becker, C., Mader, G., Martin, D., Li, X., Jiang, T., ... & Bürki, B. (2017). The Geoid Slope Validation Survey 2014 and GRAV-D airborne gravity enhanced geoid comparison results in Iowa. Journal of Geodesy, 91(10), 1261-1276.
  • [7] Kayı, A., Erdoğan, M. & Eker, O. (2015). LiDAR test results carried out using OPTECH HA-500 and RIEGL LMS-Q1560. Map J. 153, 42–46.
  • [8] Yilmaz, N. & Cakir, L. (2016). A research of consistencies and progresses of geoid models in Turkey. Arabian Journal of Geosciences, 9(1), 1-11.
  • [9] Wever, C. & Lindenberger, J. (1999). Experiences of 10 years laser scanning. In: Photogrammetric Week 99.
  • [10] Sties, M., Kruger, S., Mercer, J. B. & Schnick, S. (2000). Comparison of digital elevation data from airborne laser and interferometric SAR systems. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 866-873.
  • [11] Lichti, D. & Skaloud, J. (2010). Registration and calibration. In Air borne and Terrestrial Laser Scanning; Vosselman, G., Maas, H.G., Eds.; Whittles Publishing, 336.
  • [12] Ravi, R. & Habib, A. (2020). Fully Automated profile-based calibration strategy for airborne and terrestrial mobile LiDAR systems with spinning multi-beam laser units. Remote Sensing, 12(3), 401.
  • [13] Beraldin, J.A., Blais, F., & Lohr, U. 2010. Laser scanning technology. In Air borne and Terrestrial Laser Scanning; Vosselman, G., Maas, H.G., Eds. Whittles Publishing: Scotland, UK, 2010; 336.
  • [14] Zhang, W. & Li, Q. (2006). A preliminary simulation to study the potential of integration of LIDAR and imagery. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VI (Vol. 6366, p. 63660W). International Society for Optics and Photonics.
  • [15] Süleymanoğlu, B. & Soycan, M. (2019). Comparison of filtering algorithms used For DTM Production from airborne LiDAR data: A case study in Bergama, Turkey.
  • [16] Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth surface processes and Landforms, 38(4), 421-430.
  • [17] Agüera-Vega, F., Carvajal-Ramírez, F. & Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221-227.
  • [18] Tahar, K. N. (2013). An Evaluation On Different Number of Ground Control Points in Unmanned Aerial Vehicle. Photogrammetric Block XL. 27–29.