Bilecik İlindeki Şehirleşmenin Taşkın Riski Üzerindeki Etkilerinin Araştırılması

Taşkınlar, son yıllarda doğal dengenin giderek bozulması sonucu, şiddetini ve yıkıcılığını arttırmakta ve daha sık meydana gelmektedir. Taşkınların yaşanmasındaki en önemli nedenlerden biri şehirleşmeyle meydana gelen arazi kullanımındaki değişimlerdir. Bu çalışmada, ilk olarak uzaktan algılama ile şehirleşmedeki değişimin bulunması hedeflenmiştir. Daha sonra, coğrafi bilgi sistemlerinden yararlanarak şehirleşmedeki bu değişimin taşkın riski üzerindeki etkisinin ortaya konulması hedeflenmiştir. Çalışmada, Bilecik ilinin 2000 ve 2018 yıllarına ait CORINE arazi kullanımı haritaları kullanılarak arazi sınıflarındaki değişim incelenmiştir. Bölgedeki taşkın riskini etkileyebilecek yağış, eğim, yükseklik ve arazi kullanımı ve akarsulara uzaklık gibi parametrelerin modellemeye eklenmesiyle birlikte Çok Kriterli Karar Verme Analiziyle taşkın risk haritası modellemeleri yapılmıştır. Yapılan çalışma sonucunda, 2000 yılından 2018yılına kadar bölgenin arazi yapısı değişiminin taşkın riski üzerindeki etkisi ortaya konmuştur. 2000 yılında taşkın riski altında olan alan 12250 ha iken 2018 yılında bu alan 13547 ha olmuştur. Bu durum şehirleşmenin taşkın riski üzerindeki negatif etkisini açık bir şekilde ortaya koymaktadır.

Investigation of Effects of Urbanization on Flood Risk in Bilecik Province

In recent years, as a result of the gradual deterioration of the natural balance, floods increase their severity and destructiveness and occur more frequently. One of the most important reasons for floods is the changes in the land caused by urbanization. In this study, firstly, it is aimed to find the change in urbanization with remote sensing. Then it is aimed to reveal the effect of this change in urbanization on flood risk by using geographical information systems. In the study, the change in land classes was examined by using the CORINE land use maps of Bilecik province for the years 2000 and 2018.With the addition of parameters, such as precipitation, slope, elevation and land use, and distance to rivers, which may affect the flood risk in the region, flood risk map modeling has been carried out with Multi-Criteria Decision Making Analysis. As a result of the study, the effect of the land structure change of the region on the flood risk from 2000 to 2018 has been revealed. While the area under flood risk was 12,250 ha in 2000, this area was 13,547 ha in 2018. This situation clearly reveals the negative effect of urbanization on flood risk.

___

  • [1] Atay, H., Tuvan, A., Demir, O. & Balta, I. (2012).İklim değişikliğinin sağlık üzerine etkileri. T.C. Orman ve Su İşleri Bakanlığı, Meteoroloji Genel Müdürlüğü, Ankara.
  • [2] T.C. Orman ve Su İşleri Bakanlığı. (2017). Taşkın Yönetimi. Su Yönetimi Genel Müdürlüğü, Ankara.
  • [3] Park, K. & Lee, M. H. (2019). The Development and Application of the Urban Flood Risk Assessment Model for Reflecing upon Urban Planning Elements. Water, MDPI, 11, 1-17.
  • [4] Shanableh, A., Al-Ruzouq, R., Yılmaz, A. G., Siddique, M., Merabtene, T. & Imteaz, M. A. (2018). Effects of Land Cover Change on Urban Floods and Rainwater Harvesting: A Case Study in Sharjah, UAE. Water, MDPI, 10(631), 1-17.
  • [5] Barasa, B. N. & Perera, E. D. P. (2018). Analysis of land use change impacts on flash flood occurrences in the Sosiani River basin Kenya. International Journal of River Basin Management, 16(2), 179-188.
  • [6] Du, J., Zhang, Q., Yang, Y. & Xu, W. (2019). Different Flooding Behaviors Due to Varied Urbanization Levels within River Basin: A Case Study from the Xiang River Basin, China. International Journal of Disaster Risk Science, 10(1), 89-102.
  • [7] Veerbeek, W. (2017). Estimating the impacts of urban growth on future flood risk a comparative study. Doctoral Thesis, Delft University of Technology, Netherlands.
  • [8] Haas, J. (2016). Remote Sensing of Urbanization and Environmental Impacts. Doctoral Thesis in Geoinformatics, KTH Architecture and the Built Environment, KTH Royal Institute of Technology, Sweden.
  • [9] Özkan, S. P. & Tarhan, Ç. (2016). Detection of Flood Hazard in Urban Areas Using GIS: İzmir Case. Procedia Technology, 22, 373-381.
  • [10] Meng, X., Zhang, M., Wen, J., Du, S., Xu, H., Wang, L. & Yang, Y. (2019). A Simple GIS-Based Model for Urban Rainstorm Inundation Simulation. Sustainability, 11(10), 1-19.
  • [11] Chen, J., Hill, A. A. & Urbano, L. D. (2009). A GIS-based model for urban flood inundation. Journal of Hydrology, 373(1), 184-192.
  • [12] Lin, L. & Liang, Q. (2019). Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Natural Hazards, 97, 455-475.
  • [13] Bayazıt, Y., Koç, C. & Bakış, R. (2020). Urbanization impacts on flash urban floods in Bodrum Province, Turkey. Hydrological Sciences Journal, 66(6), 1-16.
  • [14] Uslu, G., Sesli, F. A. & Uzun, B. (2018). Coğrafi Bilgi Sistemleri ile Taşkın Tehlike Haritalarının Belirlenmesi. Kent Akademisi, 11(4), 545-558.
  • [15] Bayazıt, Y., Bakış, R., Koç, C., Kaya, T. & Özdemir, N. (2019). Formation of Eskişehir Province Flood Maps with Using of Geographical Information Systems. Journal of Geoscience and Environment Protection, 7, 151-159.
  • [16] Jing, M. & Wu, J. (2013).Fast image interpolation using directional inverse distance weighting for real-time applications. Optics Communications, 286, 111-116.
  • [17] Chen, F. W. & Liu, C. W. (2012).Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 10, 209-222.
  • [18] Liu, Z. N., Yu, X. Y., Jia, L. F., Wang, Y. S., Song, Y. C. & Meng, H. D. (2021). The influence of distance weight on the inverse distance weighted method for ore-grade estimation. Scientific Reports, 11 (2689).
  • [19] Dou, X., Song, J., Wang, L., Tang, B., Xu, S., Kong, F. & Jiang, X. (2018). Flood risk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong Urban Area, China. Stochastic Environmental Research and Risk Assessment, 32, 1131-1146.
  • [20] CORINE (2020). Land Cover. Copernicus Land Monitoring Service, https://land.copernicus.eu/paneuropean/corine-land-cover, (28.01.2021).
  • [21] Saaty, T. I. (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48, 9-26.
  • [22] Saaty, T. I. (1990). An exposition of the ahp in reply to the paper remarks on the analytic hierarchy process. Management Science, 36(3), 259-268.
  • [23] Wang, Y., Li, Z., Tang, Z. & Zeng, G. (2011). A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resources Management, 25, 3465- 3484.
  • [24] Zerger, A. (2002). Examining GIS decision utility for natural hazard risk modelling. Environmental Modelling & Software, 17(3), 287-294.
  • [25] Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment offlood hazard areas at a regional scale using an index-basedapproach and Analytical Hierarchy Process: Application inRhodope–Evros region Greece. Science of the Total Environment, 538, 555-563.
  • [26] T.C. Tarım ve Orman Bakanlığı. (2018). Sakarya Havzası Taşkın Yönetim Planı. Su Yönetimi Genel Müdürlüğü, Ankara.
  • [27] Tabari, H. (2020).Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10 (13768).
  • [28] Guhathakurta, P., Sreejith, O. P. & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science, 120 (359).
  • [29] Schmitt, T. G. & Scheid, C. (2020). Evaluation and communication of pluvial flood risks in urban areas. WIRE’s Water, 7 (1).
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ