Turunçgil Flavonoidlerinin Kardiyovasküler Sağlık Üzerine Etkileri

Turunçgiller, anavatanı Güneydoğu Asya olan, genel olarak tropik bölgelerde yetiştirilen meyvelerdir. Ülkemizde, Akdeniz ve Ege bölgelerinde yetiştirilmektedir. Üretilen turunçgil meyvelerinin yaklaşık %60’ı taze olarak, %40’ı ise meyve suyu olarak tüketilmektedir. C vitamininin önemli bir kaynağı olmasının yanı sıra posa, folat ve B vitaminleri ile potasyum, kalsiyum, fosfor, magnezyum, bakır minerallerini içermektedir. Turunçgil meyveleri, polifenolik bileşiklerinden flavonoidlerin de önemli bir kaynağıdır. Flavonoid miktarı, bitkinin türü, konsantrasyonu ve meyvenin bölümlerine göre dağılımı gibi genetik ve çevresel faktörlere bağlı olarak değişmektedir. Son yıllarda turunçgil flavonoidlerinin sağlık üzerindeki potansiyel terapötik etkileri ilgi çekicidir. Kardiyovasküler hastalıklar ve turunçgil flavonoidleri içeren meyve ve meyve suları tüketimi ile ilgili yapılan araştırmalarda bu bileşiklerin lipid düşürücü, insülin duyarlılığını arttırıcı, antihipertansif ve antiinflamatuar etkileri olduğu gözlenmiş ancak etki mekanizmaları net olarak belirlenememiştir. Bu derleme makalede, turunçgil flavonoidlerinin kimyasal özellikleri ve kardiyovasküler sağlık üzerindeki potansiyel etkileri güncel yaklaşımlara göre değerlendirilmiştir.

The Effects of Citrus Flavonoids on Cardiovascular Health

Citrus fruits are grown in the tropical region in Southeast Asia. In our country, citrus fruits cultivated in Mediterranean and Aegean regions and approximately 60% of produced citrus fruits are consumed as fresh and 40% as fruit juice. In addition to being an important source of vitamin C, citrus fruits contain fibre, folate and vitamin B derivatives and potassium, calcium, phosphorus, magnesium and copper minerals. Citrus fruits are also an important source of flavonoids which is subgroup of polyphenolic compounds. The amount of flavonoid compounds in citrus fruits varies depending on genetic and environmental factors, such as species, concentration and distribution of the fruit. The potential therapeutic effects of citrus flavonoids on health are remarkable. Studies on cardiovascular diseases and the consumption of fruit and fruit juices containing citrus flavonoids have been found to be lipid lowering, insulin sensitivity enhancing, antihypertensive and antiinflammatory effects but the mechanisms of action have not been clearly determined. In this review article, the chemical properties of citrus flavonoids and their potential effects on cardiovascular health have been evaluated with current approaches.

___

  • 1. Mulvihill EE, Burke AC, Huff MW. Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis. Annu Rev Nutr. 2016;36:275-99.
  • 2. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
  • 3. Ferreira RdQ, Greco SJ, Delarmelina M, Weber KC. Electrochemical quantification of the structure/ antioxidant activity relationship of flavonoids. Electrochim Acta. 2015;163:161-6.
  • 4. Assini JM, Mulvihill EE, Huff MW. Citrus flavonoids and lipid metabolism. Curr Opin Lipidol. 2013;24(1):34-40.
  • 5. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization; 2011. Report No.: 9244564378.
  • 6. Testai L, Calderone V. Nutraceutical Value of Citrus Flavanones and Their Implications in Cardiovascular Disease. Nutrients. 2017;9(5):502.
  • 7. Cassidy A, Rimm EB, O’Reilly ÉJ, Logroscino G, Kay C, Chiuve SE, et al. Dietary Flavonoids and Risk of Stroke in Women. Stroke. 2012;43(4):946-51.
  • 8. Chanet A, Milenkovic D, Manach C, Mazur A, Morand C. Citrus flavanones: what is their role in cardiovascular protection? J Agric Food Chem. 2012;60(36):8809-22.
  • 9. Yamada T, Hayasaka S, Shibata Y, Ojima T, Saegusa T, Gotoh T, et al. Frequency of Citrus Fruit Intake Is Associated With the Incidence of Cardiovascular Disease: The Jichi Medical School Cohort Study. J Epidemiol. 2011;21(3):169-75.
  • 10. Mulvihill E, Huff M. Citrus flavonoids and the prevention of atherosclerosis. Cardiovasc Hematol Disord Drug Targets. 2012;12(2):84-91.
  • 11. Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, Haytowitz DB, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J Food Compost Anal. 2006;19:S66-S73.
  • 12. Cappello A, Dolce V, Iacopetta D, Martello M, Fiorillo M, Curcio R, et al. Bergamot (Citrus bergamia Risso) flavonoids and their potential benefits in human hyperlipidemia and atherosclerosis: An overview. Mini Rev Med Chem. 2016;16(8):619-29.
  • 13. Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, YANO M, Ohta H. Flavonoid composition of fruit tissues of citrus species. Biosci Biotechnol Biochem. 2006;70(1):178-92.
  • 14. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of US adults. J Nutr. 2007;137(5):1244-52.
  • 15. Sun Y, Qiao L, Shen Y, Jiang P, Chen J, Ye X. Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. J Food Sci. 2013;78(1).
  • 16. Kanaze F, Bounartzi M, Georgarakis M, Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr. 2007;61(4):472-7.
  • 17. Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, et al. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr ESPEN. 2003;22(6):561-8.
  • 18. Constans J, Bennetau-Pelissero C, Martin JF, Rock E, Mazur A, Bedel A, et al. Marked antioxidant effect of orange juice intake and its phytomicronutrients in a preliminary randomized cross-over trial on mild hypercholesterolemic men. Clin Nutr. 2015;34(6):1093- 100.
  • 19. Khan MK, Zill EH, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compost Anal. 2014;33(1):85-104.
  • 20. Miceli N, Mondello MR, Monforte MT, Sdrafkakis V, Dugo P, Crupi ML, et al. Hypolipidemic effects of Citrus bergamia Risso et Poiteau juice in rats fed a hypercholesterolemic diet. J Agric Food Chem. 2007;55(26):10671-7.
  • 21. Di Donna L, Iacopetta D, Cappello AR, Gallucci G, Martello E, Fiorillo M, et al. Hypocholesterolaemic activity of 3-hydroxy-3-methyl-glutaryl flavanones enriched fraction from bergamot fruit (Citrus bergamia): “In vivo” studies. J Funct Foods. 2014;7:558-68.
  • 22. Di Donna L, De Luca G, Mazzotti F, Napoli A, Salerno R, Taverna D, et al. Statin-like principles of bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J Nat Prod (Gorakhpur). 2009;72(7):1352-4.
  • 23. Habauzit V, Verny M-A, Milenkovic D, Barber-Chamoux N, Mazur A, Dubray C, et al. Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: a randomized, controlled, crossover trial. Am J Clin Nutr. 2015;102(1):66-74.
  • 24. Benavente-García O, Castillo J. Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular, and Anti-inflammatory Activity. J Agric Food Chem. 2008;56(15):6185-205.
  • 25. Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS, et al. Selected Dietary Flavonoids Are Associated with Markers of Inflammation and Endothelial Dysfunction in U.S. Women. J Nutr. 2011;141(4):618-25.
  • 26. Ferlazzo N, Cirmi S, Calapai G, Ventura-Spagnolo E, Gangemi S, Navarra M. Anti-Inflammatory Activity of Citrus bergamia Derivatives: Where Do We Stand? Molecules. 2016;21(10):1273.
  • 27. Risitano R, Currò M, Cirmi S, Ferlazzo N, Campiglia P, Caccamo D, et al. Flavonoid Fraction of Bergamot Juice Reduces LPS-Induced Inflammatory Response through SIRT1-Mediated NF-κB Inhibition in THP-1 Monocytes. PLoS One. 2014;9(9):e107431.
  • 28. Gliozzi M, Walker R, Mollace V. Bergamot polyphenols: pleiotropic players in the treatment of metabolic syndrome. J Metab Syndr. 2014;3(2):143.
  • 29. Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007;104(2):466-79.
  • 30. Goetz ME, Judd SE, Hartman TJ, McClellan W, Anderson A, Vaccarino V. Flavanone Intake Is Inversely Associated with Risk of Incident Ischemic Stroke in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. J Nutr. 2016;146(11):2233-43.
  • 31. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76(3):560- 8.
  • 32. Demonty I, Lin Y, Zebregs YE, Vermeer MA, van der Knaap HC, Jäkel M, et al. The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women. J Nutr. 2010;140(9):1615-20.
  • 33. Schär MY, Curtis PJ, Hazim S, Ostertag LM, Kay CD, Potter JF, et al. Orange juice–derived flavanone and phenolic metabolites do not acutely affect cardiovascular risk biomarkers: a randomized, placebo-controlled, crossover trial in men at moderate risk of cardiovascular disease. Am J Clin Nutr. 2015;101(5):931-8.
  • 34. Morand C, Dubray C, Milenkovic D, Lioger D, Martin JF, Scalbert A, et al. Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers. Am J Clin Nutr 2010;93(1):73-80.
  • 35. Janda E, Lascala A, Martino C, Ragusa S, Nucera S, Walker R, et al. Molecular mechanisms of lipid- and glucose-lowering activities of bergamot flavonoids. PharmaNutrition. 2016;4:S8-S18.
  • 36. Gliozzi M, Carresi C, Musolino V, Palma E, Muscoli C, Vitale C, et al. The effect of bergamot-derived polyphenolic fraction on ldl small dense particles and non alcoholic fatty liver disease in patients with metabolic syndrome. Adv Biol Chem. 2014;4(02):129.
  • 37. Gliozzi M, Walker R, Muscoli S, Vitale C, Gratteri S, Carresi C, et al. Bergamot polyphenolic fraction enhances rosuvastatin-induced effect on LDLcholesterol, LOX-1 expression and protein kinase B phosphorylation in patients with hyperlipidemia. Int J Cardiol. 2013;170(2):140-5.
  • 38. Mollace V, Sacco I, Janda E, Malara C, Ventrice D, Colica C, et al. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: From animal models to human studies. Fitoterapia. 2011;82(3):309-16.
  • 39. Toth PP, Patti AM, Nikolic D, Giglio RV, Castellino G, Biancucci T, et al. Bergamot Reduces Plasma Lipids, Atherogenic Small Dense LDL, and Subclinical Atherosclerosis in Subjects with Moderate Hypercholesterolemia: A 6 Months Prospective Study. Front Pharmacol. 2016;6(299).
  • 40. Xulu S, Owira PMO. Naringin ameliorates atherogenic dyslipidemia but not hyperglycemia in rats with type 1 diabetes. J Cardiovasc Pharmacol. 2012;59(2):133-41.