Maternal Folik Asit Suplemantasyonunun Rat Yavrularında Doğum Ağırlığı ve Obezite Gelişimi Üzerine Etkilerinin Değerlendirilmesi

Amaç: Bu çalışmada gebelik boyunca farklı miktarlarda folik aside (FA) maruz bırakılan rat yavrularının doğum ağırlığı ile obezite gelişimi üzerine etkilerinin değerlendirilmesi amaçlanmıştır. Gereç ve Yöntem: Wistar türü dişi ratların (n=18) gebe kalmaları sağlanmış ve randomize şekilde üç gruba ayrılmıştır. Gebelik döneminde her gruba FA içerikleri farklı üç ayrı beslenme protokolü (Kontrol grubu [KG]: 2 mg/kg folik asit, Deney 1 grubu [D1]: 5 mg/kg folik asit, Deney 2 grubu [D2]: 40 mg/kg folik asit) uygulanmıştır. Kontrol ve deney grubu yavruların doğum ağırlığına bakılmıştır. Laktasyon dönemi sonrasında her gruptan 12 yavru (6 dişi ve 6 erkek) olmak üzere toplamda 36 yavrunun haftalık vücut ağırlığı takibi yapılmıştır. Yedi ve on ikinci haftaların sonunda yavruların obezite durumu (Lee indeksi) değerlendirilmiştir. Çalışmaya toplamda 18 anne ve 36 yavru olmak üzere 54 rat dahil edilmiştir. Bulgular: En yüksek ortalama doğum ağırlığının, D2 grubundaki ratlardan doğan yavrularda olduğu belirlenmiştir (KG: 5.6±0.1 g; D1: 5.8±0.5 g; D2: 5.9±0.2 g; p

Evaluation of Effects of Maternal Folic Acid Supplementation on Birth Weight and Obesity Development in the Offspring of Rats

Aim: This study aimed to evaluate the effects of different amounts of maternal folic acid (FA) supplementation on birth weight and obesity development in the offspring of rats. Material and Method: Wistar female rats (n=18) were mated and randomly divided into three groups. Three different feeding protocols were administered to each group during pregnancy (Control group [CG]: 2 mg/kg folic acid, Experimental group 1 [E1]: 5 mg/kg folic acid, Experimental group 2 [E2]: 40 mg/kg folic acid). Birth weights of pups in each group were recorded. Body weights of total 36 pups including 12 pups (6 females and 6 males) from each group were monitored weekly after lactation period. Pups were evaluated for obesity (Lee index) at the end of the 7th and 12th weeks. In total, 54 rats (18 mother rats and 36 pups) were included. Results: The highest mean birth weight was found in E2 group pups (CG: 5.6±0.1 g; E1: 5.8±0.5 g; E2:5.9±0.2 g, p

___

  • 1. Liew SC. Folic acid and diseases - supplement it or not? Rev Assoc Med Bras. 2016;62(1):90-100.
  • 2. Keating E, Martel F, Araújo JR. Folic Acid and Gestational Diabetes: Foundations for Further Studies. In: Rajendram R, Preedy V, Patel V (editors). Nutrition and Diet in Maternal Diabetes. Humana Press, Cham; 2018. p.465-77.
  • 3. Yan J, Zheng YZ, Cao LJ, Liu YY, Li W, Huang GW. Periconceptional folic acid supplementation in Chinese Women: A cross-sectional study. Biomed Environ Sci. 2017;30(10):737-48.
  • 4. Cox JT, Carney VH. Nutrition for reproductive health and lactation. In: Mahan LK, Raymond JL (editors). Krause’s food & the nutrition care process. 13th Edition. United States of America: Elsevier Health Sciences, 2016. p.239- 99.
  • 5. Wang S, Ge X, Zhu B, Xuan Y, Huang K, Rutayisire E, et al. Maternal continuing folic acid supplementation after the first trimester of pregnancy increased the risk of large-for-gestational-age birth: A population-based birth cohort study. Nutrients 2016;8(8):1-11.
  • 6. Krishnaveni GV, Veena SR, Karat SC, Yajnik CS, Fall CH. Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia. 2014;57(1):110-21.
  • 7. Procter SB, Campbell CG. Position of the Academy of Nutrition and Dietetics: nutrition and lifestyle for a healthy pregnancy outcome. J Acad Nutr Diet. 2014;114(7):1099-103.
  • 8. T. C. Sağlık Bakanlığı. Türkiye Beslenme Rehberi (TÜBER). Sağlık Bakanlığı Yayınları, Ankara. 2015; s. 288.
  • 9. Fekete K, Berti C, Trovato M, Lohner S, Dullemeijer C, Souverein OW. Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. Nutr J. 2012;11(1):75.
  • 10. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51(1):29-38.
  • 11. Muthayya S, Kurpad AV, Duggan CP, Bosch RJ, Dwarkanath P, Mhaskar A, et al. Low maternal vitamin B12 status is associated with intrauterine growth retardation in urban South Indians. Eur J Clin Nutr. 2006;60(6):791-801.
  • 12. Scholl TO, Hediger ML, Schall JI, Khoo CS, Fischer RL. Dietary and serum folate: their influence on the outcome of pregnancy. Am J Clin Nutr.1996;63(4):520-5.
  • 13. Yajnik CS, Deshpande SS, Panchanadikar AV, Naik SS, Deshpande JA, Coyaji KJ. Maternal total homocysteine concentration and neonatal size in India. Asia Pac J Clin Nutr. 2005;14(2):179-81.
  • 14. Rao S, Yajnik CS, Kanade A, Fall CH, Margetts BM, Jackson AA et. al. Maternal fat intakes and micronutrient status are related to fetal size at birth in rural India; the Pune Maternal Nutrition Study. J Nutr. 2001;131(4):1217-24.
  • 15. Relton CL, Pearce MS, Parker L. The influence of erythrocyte folate and serum vitamin B12 status on birth weight. Br J Nutr. 2005;93(5):593-9.
  • 16. Stewart CP, Christian P, Schulze KJ, Arguello M, LeClerq SC, Khatry SK et al. Low maternal vitamin B12 status is associated with offspring insulin resistance regardless of antenatal micronutrient supplementation in rural Nepal. J Nutr. 2011;141(10):1912-7.
  • 17. Hogeveen M, Blom HJ, den Heijer M. Maternal homocysteine and small-for-gestational-age offspring: systematic review and meta-analysis. Am J Clin Nutr. 2012;95(1):130-6.
  • 18. Xie K, Fu Z, Li H, Gu X, Cai Z, Xu P. High folate intake contributes to the risk of large for gestational age birth and obesity in male offspring. J Cell Physiol. 2018;233(12):9383-9.
  • 19. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51.
  • 20. Huang Y, He Y, Sun X, He Y, Li Y, Sun C. Maternal high folic acid supplement promotes glucose intolerance and insulin resistance in male mouse offspring fed a high-fat diet. Int J Mol Sci. 2014;15(4):6298-313.
  • 21. Bernardis LL, Patterson BD. Correlation between ‘Lee index’ and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol. 1968;40(4):527-8.
  • 22. Yajnik CS, Deshmukh US. Fetal programming: maternal nutrition and role of one-carbon metabolism. Rev Endocr Metab Disord. 2012;13(2):121-7.
  • 23. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1-2):121-38.
  • 24. Martinussen MP, Bracken M., Triche EW, Jacobsen GW, Risnes KR. Folic acid supplementation in early pregnancy and the risk of preeclampsia, small for gestational age offspring and preterm delivery. Eur J Obstet Gynecol Reprod Biol. 2015;195:94-9.
  • 25. Shaw GM, Carmichael SL, Nelson V, Selvin S, Schaffer DM. Occurrence of low birthweight and preterm delivery among California infants before and after compulsory food fortification with folic acid. Public Health Rep. 2004;119(2):170-3.
  • 26. Keating E, Correia-Branco A, Araujo JR, Meireles M, Fernandes R, Guardao L, et al. Excess perigestational folic acid exposure induces metabolic dysfunction in post-natal life. J Endocrinol. 2015;224(3):245-59.
  • 27. Castano E, Pinunuri R, Hirsch S, Ronco AM. Folate and pregnancy, current concepts: It is required folic acid supplementation? Rev Chil Pediatr. 2017;88(2):199-206.
  • 28. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005; 135(6):1382-6.
  • 29. Finnell RH, Spiegelstein O, Wlodarczyk B, Triplett A, Pogribny IP, Melnyk S, et al. DNA methylation in Folbp1 knockout mice supplemented with folic acid during gestation. J Nutr. 2002;132(8):2457-61.
  • 30. Ly A, Lee H, Chen J, Sie KK, Renlund R, Medline A, et al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring Cancer Res. 2011;71(3):988-97.
  • 31. Silva C, Keating E, Pinto E. The impact of folic acid supplementation on gestational and long term health: Critical temporal windows, benefits and risks. Porto Biomed J. 2017;2(6):315-32.
  • 32. Cho CE, Sanchez-Hernandez D, Reza-Lopez SA, Huot PS, Kim YI, Anderson GH. High folate gestational and postweaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics. 2013;8(7):710-9.
  • 33. Hu J, Oken E, Aris IM, Lin PD, Ma Y, Ding N, et al. Dietary patterns during pregnancy are associated with the risk of gestational diabetes mellitus: evidence from a Chinese prospective birth cohort study. Nutrients. 2019;11(2) pii:E405.
  • 34. Zhu B, Ge X, Huang K, Mao L, Yan S, Xu Y, et. al. Folic acid supplement intake in early pregnancy increases risk of gestational diabetes mellitus: evidence from a prospective cohort study. Diabetes Care. 2016;39(3):36-7.
  • 35. Yajnik CS. Nutrient-mediated teratogenesis and fuelmediated teratogenesis: two pathways of intrauterine programming of diabetes. Int J Gynaecol Obstet. 2009;104(1):27-31.