Ksantofiller ve Sağlıkla İlişkileri

Ksantofiller; bitkiler, diğer fotosentetik organizmalar (algler, funguslar) ve fotosentez yapmayan bazı maya ve küflerce sentezlenen tetraterpenik organik pigmentlerdir. Bu bileşikler fotosentetik organizmalarda bulunmakta ve sarıdan kırmızıya çoğu meyve ve sebzeye rengini vermektedir. Diyetle alımları özellikle meyve ve sebzelerden sağlanmaktadır. Vücuttaki emilim ve biyoyararlılıkları çeşitli faktörlerden etkilenmektedir. Diyet ksantofillerinin sahip oldukları biyolojik aktiviteler ile göz, kalp-damar, kemik, beyin sağlığı ile diyabet, obezite ve kanserler gibi kronik hastalıkların oluşumu ve seyrinde yararlı etkiler oluşturabildiği gösterilmiştir. Özellikle antioksidan aktiviteleri ve kronik hastalıklar üzerindeki potansiyel önleyici ve/veya teröpatik etkileri nedeniyle günümüzde ilgi odağı durumundadırlar. Bu derleme makalede; ksantofillerin biyoyararlılığı ve sağlık üzerine etkileri özetlenmiştir.

Xanthophylls and Their Relationship with Health

Xanthophylls are tetraterpenic organic pigments which are synthesized in plants and other photosynthetic organisms (algas and fungus) as well as in some non-photosynthetic molds and yeasts. These compounds exist in photosynthetic organisms and assign the colors of most fruits and vegetables from yellow to red. Dietary intakes are particularly from fruits and vegetables. Their absorption and bioavailability in the body are affected by various factors. Dietary xanthophylls have been shown to have beneficial effects on the formation and course of chronic diseases such as eye, cardiovascular, bone, brain health and diabetes, obesity and cancers through their biological activities. Especially, due to their antioxidant activities and potential preventive and/or therapeutical properties on chronical diseases, they are now the focus of attention. In this review article, the bioavailability of xanthophylls and their effects on health were summarized.

___

1. Thomas SE, Johnson EJ. Xanthophylls. Adv Nutr.2018;9:160-2

2. Desmarchelier C, Borel P. Overview of carotenoid bioavailability determinants: from dietary factors to host genetic variations. Trends Food Sci Technol.2017;69:270-80

3. Aghajanpour M, Nazer MR, Obeidavi Z, Akbari M, Ezati P, Kor NM. Functional foods and their role in cancer prevention and health promotion: a comprehensive review. Am J Cancer Res.2017;7(4):740-69.

4. Kotake-Nara E, Nagao A. Absorbtion and metabolism of xanthophylls. Mar Drugs.2011;9:1024-37.

5. GRAS Notice 000588: Zeaxanthin from capsicum. June 25, 2015. Available at: http://www.accessdata.fda. gov_2018 Accessed October 21,2018

6. Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules.2012;17:3202-42.

7. European Food Safety Authority (EFSA). Scientific Opinion on the re-evaluation of canthaxanthin (E 161 g) as a food additive. EFSA J.2010; 8(10):1-42.

8. Kishimoto Y, Yoshido H, Kondo K. Potential antiatherosclerotic properties of astaxanthin. Mar Drugs.2016;14(35):1-13.

9. Stewart JS, Lignell A, Pettersson A, Elfving E, Soni MG. Safety assessment of astaxanthin-rich microalgae biomass: Acute and subchronic toxicity studies in rats. Food Chem Toxicol.2008;46(9):3030-6

10. European Food Safety Authority (EFSA). Opinion of the scientific panel on additives and products or substances used in animal feed on the request from the commission on the safety of use of colouring agents in animal nutrition. EFSA J. 2006;386:1-40.

11. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci.2007;56(12):615-21.

12. Widomska J, Subczynski WK. Why has nature chosen lutein and zeaxanthin to protect the retina? J Clin Exp Ophthalmol. 2014;5:326.

13. Skibsted LH. Anthocyanidins regenerating xanthophylls: a quantum mechanical approach to eye health. Curr Opin Food Sci. 2018;20:24-9.

14. Liu R, Wang T, Zhang B, Qin L, Wu C, Li Q, et al. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Invest Ophthalmol Vis Sci.2014;56:252-8.

15. Otsuka T, Shimazawa M, Nakanishi T, Ohno Y, Inoue Y, Tsuruma K, et al. The protective effects of a dietary caretenoid, astaxanthin, against light-induced retinal damage. J Pharmacol Sci.2013;123:209-18.

16. Yeh PT, Huang HW, Yang CM, Yang WS, Yang CH. Astaxanthin inhibits expression of retinal oxidative stress andinflammatory mediators in streptozotocinınduced diabetic rats. PLoS One.2016;11(1):1-20.

17. Niranjana R, Gayathri R, Mol SN, Sugawana T, Hirata T, Miyashita K, et al. Carotenoids modulate the hallmarks of cancer cells. J Funct Foods.2015;18:968-85.

18. Yasui Y, Hosokawa M, Mikami N, Miyashita K, Tanaka T. Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem Biol Interact.2011;193:79-87.

19. Tanaka T, Morishita Y, Suzui M, Kojima T, Okumura A, Mori H. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinog.1994;15:15–9.

20. Das SK, Hashimoto T, Kanazawa K. Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochim Biophys Acta.2008;1780:743-9.

21. Zhang Z, Zhang P, Hamada M, Takahashi S, Xing G, Liu J, et al. Potential chemoprevention effect of dietary fucoxanthin on urinary bladder cancer EJ-1 cell line. Oncol Rep.2008;20:1099-103.

22. Toniolo P, Van Kappel AL, Akhmedkhanov A, Ferrari P, Kato I, Shore RE, et al. Serum carotenoids and breast cancer. Am J Epidemiol.2001;153(12):1142-7.

23. Michaud DS, Feskanich D, Rimm EB, Colditz GA, Speizer FE, Willett WC, et al. Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. Am J Clin Nutr.2000;72:990-7.

24. Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, et al. Plasma carotenoids, vitamin C, tocopherols, and retinol and the risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr.2016;103(2):454-64.

25. Leermakers ET, Darweesh SK, Baena CP, Moreira EM, Van Lent DM, Tielemans MJ, et al. The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis. Am J Clin Nutr.2016;103(2):248-94.

26. Chung RW, Leanderson P, Lundberg AK, Jonasson L. Lutein exerts anti-inflammatory effects in patients with coronary artery disease. Atherosclerosis.2017;262:87-93.

27. Xu XR, Zou ZY, Xiao X, Huang YM, Wang X, Lin XM. Effect of lutein supplement on serum inflammatory cytokines ApoE and lipid profiles in early atherosclerosis population. J Atheroscler Thromb.2013;20:170-7.

28. Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects β-cells against glucosetoxicity in diabetic db/db mice. Redox Rep.2002;7:290-3.

29. Ni Y, Nagashimada M, Zhan L, Nagata N, Kobori M, Sugiura M, et al. Prevention and reversal of lipotoxicityinduced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, β-cryptoxanthin. Endocrinology. 2015;156:987-99.

30. Jung HA, Islam N, Lee CM, Jeong HO, Chung HY, Woo HC, et al. Promising antidiabetic potential of fucoxanthin isolated fromthe edible brown algae Eisenia bicyclis and Undaria pinnatifida. Fish Sci.2012;78:1321-9.

31. Tsuchida T, Mukai K, Mizuni Y, Masuko K, Minagawa K. The comparative study of β-cryptoxanthin derived from Satsuma mandarin for fat of human body. Jpn Parmacol Ther.2008;36:247-53.

32. Burri BJ, La Frano MR, Zhu C. Absorption, metabolism, and functions of β- cryproxanthin. Nutr Rev 2016;74(2):69-82.

33. Yamaguchi M, Igarashi A, Morita S, Sumida T, Sugawara K. Relationship between serum β-cryptoxanthin and circulating bone metabolic markers in healthy individuals with the intake of juice (Citrus unshiu) containing β-cryptoxanthin. J Health Sci.2005;51(6):738- 43.

34. Das SK, Ren R, Hashimoto T, Kanazawa K. Fucoxanthin induces apoptosis in osteoclast-like cells differentiated from RAW264.7 cells. J Agric Food Chem.2010;58:6090-5.

35. Grimming B, Kim SH, Nash K, Bickford PC, Shytle RG. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. GeroScience.2017;39:19-32.

36. Cho KS, Shin N, Kim S, Lee SB. Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative diseases. Oxid Med Cell Longev.2018:1-13.

37. Ademowo OS, Dias HKI, Milic I, Devitt A, Moran R, Mulcahy R, et al. Phospholipid oxidation and carotenoid supplementation in Alzheimer’s disease patients. Free Radic Biol Med.2017;108:77-85.

38. Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de- Mesquita B, Gallo V. Vitamin A and carotenoids and the risk of Parkin¬son’s disease: a systematic review and meta-analysis. Neuroepide¬miology.2014;42(1):25-38.

39. Renzi LM, Bovier ER, Hammond BR. A role for the macular carotenoids in visual motor response. Nutr Neurosci. 2013;16(6):262-8.

40. Manabe Y, Komatsu T, Seki S, Sugawara T. Dietary astaxanthin can accumulate in the brain of rats. Biosci Biotechnol Biochem.2018;82(8):1433-6.