Besinlerdeki İleri Glikasyon Son Ürünleri ve Azaltma Yöntemleri

İleri glikasyon son ürünleri (AGE'ler) proteinler, lipidler ve nükleik asitlerin enzimatik olmayan glikasyonundan endojen olarak üretilen heterojen bileşiklerdir. Normal metabolizmanın bir parçası olan AGE'ler, ekzojen olarak da organizmaya alınabilmektedir. Besinlerin bileşimi, besinlere hazırlık ve pişirme sırasında uygulanan işlemler, nem ve pH gibi birçok etmen doğrudan veya dolaylı olarak AGE'lerin oluşumunu etkileyebilmektedir. Protein ve yağ içeriği yüksek besinler, karbonhidrat içeriği yüksek olan besinlere göre daha yüksek miktarda AGE'leri içerirler. Diyetle alınan AGE'ler genellikle Maillard reaksiyonu kaynaklıdırlar. Maillard reaksiyonunun hızını etkileyen etmenler dolayısıyla AGE'lerin oluşumunu ve alım miktarını etkilemektedir. Yapılan çalışmalarda günlük ortalama AGE'lerin alımının 16.000 kU olduğu saptanmıştır. Ekzojen AGE'lerin oluşumunu azaltmak amacıyla günümüzde farklı yöntemler kullanılmaktadır. Yüksek nem, daha kısa pişirme süresi, daha düşük pişirme sıcaklıkları veya limon suyu, sirke gibi asidik bileşenlerin kullanımı ile besinlerdeki AGE'lerin oluşumunun azaltılabileceği belirtilmektedir. Genel olarak yağ, yağlı kırmızı et, atıştırmalık besinler ve işlenmiş besin içeriğinin azaltıldığı, sebze ve meyve, tam tahıl, kurubaklagil, yağsız et ve balık gibi besinlerin artırıldığı bir diyetle sadece AGE'lerin alımı azaltılmaz aynı zamanda hastalık risklerine karşı da koruyucu etki sağlanabilir.

Advanced Glycation End Products and Reduction Methods in Foods

Advanced glycation end products (AGEs) are heterogeneous compounds and produced endogenously from non-enzymatic glycation of the proteins, lipids and nucleic acids. AGEs are part of the normal metabolism however they can be taken to organisms exogenously. Many factors such as the composition of food, moisture, pH, processes applied to foods during preparation and cooking may affect the formation of AGEs directly or indirectly. Foods with high protein and fat content contain higher amount of AGEs compared to foods with high carbohydrate content. Dietary AGEs are generally derived from Maillard reaction. Factors affecting the rate of Maillard reaction also affect the formation and intake of AGEs. The studies have found that daily AGEs intake is about 16.000 kU. Nowadays different methods are used to reduce exogenous AGEs formation. It is stated that AGEs formation in foods may be reduced via high moisture, short cooking time, low cooking temperature or the use of acidic components such as vinegar and lemon juice. Increasing the consumption of vegetables, fruits, whole grains, legumes, lean meat and fish and reducing intake of fatty meats, snack foods and highly processed foods might not only reduce the AGEs intake but also provide a protective effect against chronic disease risks.

___

  • 1. Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol Biol (Paris) 2006;54:405-419.
  • 2. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 2010;110:911-916.
  • 3. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999;84:489-497.
  • 4. Huebschmann AG, Regensteiner JG, Vlassara H, Reusch EB. Diabetes and advanced glycoxidation end products. Diabetes Care 2006;29:1420-1432.
  • 5. Bohlender JM, Franke S, Stein G, Wolf G. Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 2005;289:645-659.
  • 6. Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced Glycation End-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol 2015;52:7561-7576.
  • 7. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 2001;44:129-146.
  • 8. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 2004;104:1287-1291.
  • 9. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body's AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 2005;1043:461-466.
  • 10. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 2005;81:341-354.
  • 11. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006;114:597-605.
  • 12. Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 2013;60:10-37.
  • 13. Sell DR. Ageing promotes the increase of early glycation Amadori product as assessed by epsilon-N- (2-furoylmethyl)-L-lysine (furosine) levels in rodent skin collagen. The relationship to dietary restriction and glycoxidation. Mech Ageing Dev 1997;95:81-99.
  • 14. Parmaksız İ. Diyabet komplikasyonlarında ileri glikasyon son ürünleri. Marmara Medical Journal 2011;24:141-148.
  • 15. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999;48:1-9.
  • 16. Hofmann T, Schieberle P. Chemical interactions between odor-active thiols and melanoidins involved in the aroma staling of coffee beverages. J Agric Food Chem 2002;50:319-326.
  • 17. Somoza V, Lindenmeier M, Hofmann T, Frank O, Erbersdobler HF, Baynes JW, et al. Dietary bread crust advanced glycation end products bind to the receptor for AGEs in HEK-293 kidney cells but are rapidly excreted after oral administration to healthy and subtotally nephrectomized rats. Ann N Y Acad Sci 2005;1043:492-500.
  • 18. Story M, Hayes M, Kalina B. Availability of foods in high schools: is there cause for concern? J Am Diet Assoc 1996;96:123-126.
  • 19. Vlassara H, Uribarri J. Glycoxidation and diabetic complications: modern lessons and a warning? Rev Endocr Metab Disord 2004;5:181-188.
  • 20. Henle T. AGEs in foods: do they play a role in uremia? Kidney Int Suppl 2003;84:145-147.
  • 21. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation end products: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 2007;62:427-433.
  • 22. Degen J, Hellwig M, Henle T. 1,2-dicarbonyl compounds in commonly consumed foods. J Agric Food Chem 2012;60:7071-7079.
  • 23. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, et al. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 2008;106:475-481.
  • 24. Ho SC, Wu, SP, Lin SM, Tang YL. Comparison of antiglycation capacities of several herbal infusions with that of green tea. Food Chem 2010;122:768-774.
  • 25. Peng X, Ma J, Cheng KW, Jiang Y, Chen F, Wang M. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem 2010;119:49-53.
  • 26. Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C, et al. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J Agric Food Chem 2008;56:1907-1911.
  • 27. Babu PV, Sabitha KE,Shyamaladevi CS. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats. Food Chem Toxicol 2008;46:280-285.