Uyumlaştırıcı Kimyasalla Güçlendirilmiş Nanoselüloz-Polipropilen Nanokompozitleri

Nanoselüloza olan talep giderek artmasıyla, bu önemli materyal uyumlaştırma kimyasallarıyla polipropilen matrikslerin güçlendirilmesinde kullanılmaktadır. Polipropilen (PP)-selüloz nanofibril (CNF) ve Fusabond Hibrit kompozitler çift vidalı ekstruder kullanılarak hazırlanmıştır. Ticari uyumlaştırıcı kimyasal PP/CNF kompozitlerinin mekanik özelliklerini iyileştirmek için kullanılmıştır. Buradaki esas zorluk, PP ve CNFs arasında uyumlu bağları oluşturmak ve polimer matriks içerisinde CNFs iyi bir dağılımını elde etmektir. Çeşitli oranlarda uyumlaştırma kimyasalı PP ve CNFs arasında yüzeyler arası bağlanmayı iyileştirmek için incelendi. Kompozitlerin FTIR karekterizasyonu polipropilen ve selüloz nanfibrilin yüzeyler arası yapışmasını belirlemek için gerçekleştirildi. Polipropilen/selüloz nanofibril kompozitlerinin mekanik ve morfolojik özellikleri üzerinde uyumlaştırıcı kimyasalın etkisi sırasıyla çekme testi, dinamik mekanik analiz ve SEM resimleriyle çalışıldı. En Kompozitlerin en iyi mekanik özellikleri, saf polipropilen (14.45 MPa, 0.570 GPa) ile karşılaştırıldığında 19.99 MPa (çekme direnci) ve yaklaşık %87 iyileşme gösteren 1.067 GPa (Young’s modülü) idi. Kırılma morfoloji incelemesi PP matriks içerisinde uyumlaştırıcı kimyasal ilavesi (0.1 wt%) durumunda CNFs’nin iyi dağılımı sağlandı. TGA sonuçları PP/CNF kompozitlerinin termal kararlılığını değiştirmediğini gösterdi, buna karşın muamelesiz PP/CNF Kompozitleriyle karşılaştırıldığında muamele edilmiş kompozitlerde hafif artış kaydedildi.

Nanocellulose-Polypropylene Nanocomposites Enhanced With Coupling Agent

As the growth of the nanocellulose is evident, this important material was used to reinforce polypropylene matrix with a coupling agent. Polypropylene (PP) - cellulose nanofibril (CNF) and Fusabond hybrid composites were prepared using twin screw extrusion technique. The commercial coupling agent was used to improve mechanical properties of PP/ CNF composites. The main challenges were to obtain well-dispersed CNFs in the polymer matrix and to establish compatible linkages between the CNFs and PP. The various loadings of coupling agent were examined to improve the interfacial adhesion between PP and CNFs. FTIR characterization of the composites were performed to confirm the interfacial adhesion of polypropylene and cellulose nanofibrils. The effect of coupling agent on the mechanical and morphological properties of polypropylene/ cellulose nanofibrils hybrid composites was studied by tensile testing, dynamic mechanical analysis, and SEM images, respectively. The best mechanical properties of the composite were 19.99 MPa (tensile strength), 1.067 GPa (Young's Modulus), which represented about 87% improvement, respectively, compared to that of pure polypropylene (14.45MPa, 0.570 GPa). Fracture morphology examination indicated good dispersion of CNFs in the PP matrix was achieved in the case of loading coupling agent (0.1 wt %). TGA results show that thermal stability of PP/CNF composites did not change much but slightly increased in the treated composites compare to that of the untreated PP/CNF composite.

___

  • Zini, E. and M. Scandola, Green composites: An overview. Polymer composites, 2011. 32(12): p. 1905-1915.
  • Asokan, P., M. Firdoous, and W. Sonal, Properties And Potential Of Bio Fibres, Bio Binders, And Bio Composites. Rev. Adv. Mater. Sci, 2012. 30: p. 254-261.
  • Jancar, J., et al., Current issues in research on structure–property relationships in polymer nanocomposites. Polymer, 2010. 51(15): p. 3321-3343.
  • Fermeglia, M., P. Posocco, and S. Pricl, Nano tools for macro problems: multiscale molecular modeling of nanostructured polymer systems. Composite Interfaces, 2013. 20(6): p. 379-394.
  • Chan, M.-l., et al., Mechanism of reinforcement in a nanoclay/polymer composite. Composites Part B: Engineering, 2011. 42(6): p. 1708-1712.
  • Andrews, R. and M.C. Weisenberger, Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science, 2004. 8(1): p. 31-37.
  • Azeredo, H., et al., Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Journal of Food Science, 2010. 75(1): p. N1-N7.
  • Ashori, A., Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 2008. 99(11): p. 4661-4667.
  • Xie, Y., et al., Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2010. 41(7): p. 806-819.
  • Nair, S.S., et al., High performance green barriers based on nanocellulose. Sustainable Chemical Processes, 2014. 2(1): p. 23.
  • Bledzki, A.K., O. Faruk, and V.E. Sperber, Cars from Bio‐Fibres. Macromolecular Materials and Engineering, 2006. 291(5): p. 449-457.
  • Koronis, G., A. Silva, and M. Fontul, Green composites: a review of adequate materials for automotive applications. Composites Part B: Engineering, 2013. 44(1): p. 120-127.
  • Holbery, J. and D. Houston, Natural-fiber-reinforced polymer composites in automotive applications. Jom, 2006. 58(11): p. 80-86.
  • Nakagaito, A., S. Iwamoto, and H. Yano, Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A, 2005. 80(1): p. 93-97.
  • Bledzki, A. and J. Gassan, Composites reinforced with cellulose based fibres. Progress in polymer science, 1999. 24(2): p. 221-274.
  • Malainine, M.E., M. Mahrouz, and A. Dufresne, Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technology, 2005. 65(10): p. 1520-1526.
  • Nakagaito, A.N., et al., Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Composites Science and Technology, 2009. 69(7): p. 1293-1297.
  • Suryanegara, L., A.N. Nakagaito, and H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology, 2009. 69(7): p. 1187-1192.
  • Iwatake, A., M. Nogi, and H. Yano, Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology, 2008. 68(9): p. 2103-2106.
  • Seydibeyoğlu, M.Ö. and K. Oksman, Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology, 2008. 68(3): p. 908-914.
  • Nakagaito, A.N. and H. Yano, Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose, 2008. 15(2): p. 323-331.
  • Mohanty, A., L. Drzal, and M. Misra, Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing. Journal of adhesion science and technology, 2002. 16(8): p. 999-1015.
  • Mulinari, D.R., et al., Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polymers, 2009. 75(2): p. 317-321.
  • Bengtsson, M. and K. Oksman, The use of silane technology in crosslinking polyethylene/wood flour composites. Composites Part A: applied science and manufacturing, 2006. 37(5): p. 752-765.
  • Raj, R., et al., Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene–wood fiber composites. Journal of applied polymer science, 1989. 37(4): p. 1089-1103.
  • Spoljaric, S., A. Genovese, and R.A. Shanks, Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Composites Part A: Applied Science and Manufacturing, 2009. 40(6): p. 791-799.
  • Garside, P. and P. Wyeth, Identification of Cellulosic Fibres by FTIR Spectroscopy-Thread and Single Fibre Analysis by Attenuated Total Reflectance. Studies in Conservation, 2003. 48(4): p. 269-275.
  • Rosli, N.A., I. Ahmad, and I. Abdullah, Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources, 2013. 8(2): p. 1893-1908.
  • Zain, N., S. Yusop, and I. Ahmad, Preparation and Characterization of Cellulose and Nanocellulose From Pomelo (Citrus grandis) Albedo. J Nutr Food Sci, 2014. 5(334): p. 2.
  • Keshk, S.M., M.S. Hamdy, and I.H. Badr, Physicochemical Characterization of Mercerized Cellulose/TiO 2 Nano-Composite. American Journal of Polymer Science, 2015. 5(1): p. 24-29.
  • Murigi, M. K., Madivoli, E. S., Mathenyu, M. M., Kareru, P. G., Gachanja, A. N., Njenga, P. K., ... & Mercy, G. (2014). Comparison of physicochemical characteristics of microcrystalline cellulose from four abundant kenyan biomasses. J Poly Text Eng, 1(2), 53-63.
  • Krishnan, A., C. Jose, and K. George, Sisal nanofibril reinforced polypropylene/polystyrene blends: Morphology, mechanical, dynamic mechanical and water transmission studies. Industrial Crops and Products, 2015. 71: p. 173-184.
  • Hietala, M., A.P. Mathew, and K. Oksman, Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. European Polymer Journal, 2013. 49(4): p. 950-956.
  • Reixach, R., et al., Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 2015. 10(2): p. 2156-2166.
  • Yuan, Y. and T.R. Lee, Contact angle and wetting properties, in Surface science techniques. 2013, Springer. p. 3-34.
  • Lee, S. and P. Luner, Wetting and interfacial properties of lignin. Tappi, 1972. 55(1): p. 116-&.
  • Bryant, B., Interaction of wood surface and adhesive variables. Forest Prod. J, 1968. 18(6): p. 57-62.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi