Ön İşlem Olarak Uygulanan Ultrasonik Banyonun Ceviz Kaplamaların Özellikleri Üzerine Etkileri

Bu çalışmanın amacı, genellikle yüzey temizliği için kullanılan ultrasonik banyonun ceviz kaplamaların kurutma süresi, yüzey pürüzlülüğü, rengi ve yoğunluğu üzerine olan etkilerinin incelenmesidir. Bu amaçla, özdeş boyutlarda hazırlanan kaplama örnekleri sabit frekansta (40 kHz) üç farklı süre ve sıcaklıkta ayarlı ultrasonik banyo ile ön işleme tabi tutulmuştur. Uygulanan bu üç farklı ultrasonik ön işlem sonrası ceviz kaplamaların yapılarında meydana gelen değişimlerin, kuruma süresine, yoğunluk (g/cm3) değerlerine, ISO 4287 standardına göre yüzey pürüzlülüğü parametrelerine ve ISO 2469 (2014) standartlarına uygun olarak renk parametrelerine olan etkileri incelenmiştir. Elde edilen sonuçlara göre; ceviz kaplama numunelerinin ultrasonik yıkama da en az etkileneceği optimum şartlar; 25°C’de 15 dakika olarak tespit edilmiştir.

Effect of Ultrasonic Bath Applied as Pretreatment on the Properties of Walnut Veneers

The aim of this study is to investigate the effects of ultrasonic bath, which is generally used for surface cleaning, on drying time, surface roughness, color and density of walnut veneers. For this purpose, coating samples prepared in identical sizes were pretreated with an ultrasonic bath set at three different times and temperatures at fixed frequency (40 kHz). After these three different ultrasonic pretreatments applied, the effects of changes in the structure of walnut coatings on drying time, density (g/cm3) values, surface roughness parameters according to ISO 4287 standard and color parameters in accordance with ISO 2469 (2014) standards were examined. According to the results obtained; optimum conditions in which walnut veneer samples will be least affected by ultrasonic washing; It was determined as 15 minutes at 25°C. 

___

  • 1. Aversa, M., Van Der Voort, A.J., De Heij, W., Tournois, B., Curcio, S. (2011). An Experimental Analysis of Acoustic Drying of Carrots: Evaluation of Heat Transfer Coefficients in Different Drying Conditions. Drying Technology 29(2): 239-244.
  • 2. Bantle, M.; Eikevik, T.M. (2011). Parametric Study of High-Intensity Ultrasound in The Atmospheric Freeze Drying of Peas. Drying Technology 29(10): 1230-1239.
  • 3. Carcel, J. A., Garcia-Perez, J.V., Riera, E., Mulet, A. (2011). Improvement of Convective Drying of Carrot by Applying Power Ultrasound Influence of Mass Load Density. Drying Technology 29(2): 174-182.
  • 4. Chandrapala, J., Oliver, C. M., Kentish, S., and Ashokkumar, M. (2013). Use of Power Ultrasound to Improve Extraction and Modify Phase Transitions in Food Processing, Food Reviews International 29(1), 67-91.
  • 5. De la Fuente-Blanco, S., De Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., Gallego-Juarez, J.A. (2006). Food Drying Process by Power Ultrasound. Ultrasonics 44: 523-527.
  • 6. Duan, X., Zhang, M., Li, X., Mujumdar, A.S. (2008). Ultrasonically Enhanced Osmotic Pretreatment of Sea Cucumber Prior to Microwave Freeze Drying. Drying Technology 26(4): 420-426.
  • 7. Fernandes, F.A.N., Gallao, M.I., Rodrigues, S. (2008). Effect of Osmotic Dehydration and Ultrasound Pre-Treatment on Cell Structure: Melon dehydration. Lwt-Food Sci Technol 41(4): 604-610.
  • 8. Floros, J.D., Liang, H.H. (1994). Acoustically Assisted Diffusion Through Membranes and Biomaterials. Food Technol-Chicago 48(12): 79-84.
  • 9. Garcia-Perez, J.V., Carcel, J.A.; Riera, E.; Mulet, A. (2009). Influence of The Applied Acoustic Energy on The Drying of Carrots and Lemon Peel. Drying Technology 27(2):281-287.
  • 10. Garcia-Perez, J.V., Ozuna, C., Ortuno, C., Carcel, J.A., Mulet, A. (2011). Modeling Ultrasonically Assisted Convective Drying of Eggplant. Drying Technology 29(13): 1499-1509.
  • 11. He, Z.B., Yang, F., Yi, S.L., Gao, J.M. (2012). Effect of Ultrasound Pretreatment on Vacuum Drying of Chinese Catalpa Wood. Drying Technology 30(15): 1750-1755.
  • 12. Jangam, S.V. (2011). An Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Drying Technology 29(12): 1343-1357.
  • 13. Mothibe, K.J., Zhang, M., Nsor-atindana, J., Wang, Y.C. (2011). Use of Ultrasound Pretreatment In Drying of Fruits: Drying Rates, Quality Attributes, And Shelf Life Extension. Drying Technology 29(14):1611-1621.
  • 14. ISO 4287, 1997. Geometrical Product Specifications Surface Texture Profile Method Terms. Definitions and Surface Texture Parameters, International Standart Organization.
  • 15. ISO 2469, 2014. Paper, board and pulps measurement of diffuse radiance factor diffuse reflectance factor.
  • 16. Simal, S.J.B., Sanchez E.S., Rossello, C. (1998). Use of Ultrasound to Increase Mass Transport Rates During Osmotic Dehydration. Journal of Food Engineering, 36(3): 323-336.
  • 17. Tanaka, T., Avramidis, S., Shida, S. (2010). A Preliminary Study on Ultrasonic Treatment Effect on Transverse Wood Permeability. Maderas. Ciencia y Tecnología 12(1): 3-9.
  • 18. Tarleton, E. (1992). The Role of Field-Assisted Techniques in Solid/Liquid Separation. Filtr Separat 29(3): 246-238.
  • 19. Tarleton, E., Wakeman, R. (1998). Ultrasound Food Process. Thomson Science, London, United Kingdom. 193-218.
  • 20. Wan, P.J., Muanda, M.W., and Covey, J.E. (1992). Ultrasonic vs Nonultrasonic Hydrogenation in A Batch Reactor, Journal of the American Oil Chemists Society 69(9), 876-879.
  • 21. Xu, H., Zhang, M., Duan, X., Mujumdar, A.S., Sun, J. (2009). Effect of Power Ultrasound Pretreatment on Edamame Prior to Freeze Drying. Drying Technology 27(2): 186-193.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi